This midterm is **open book, open notes**, but there can be no sharing of any material, and no communication except with me. You can use the Internet, but only as a library. If you are not sure if something is allowed, check with me.

Some questions in this midterm use the database schema and sample instance depicted below. [The following details are identical to those in quiz 1.] The **Boxes** table records information about boxes used by a packing store. For each type of box, it stores the box’s name and supplier, the maximum weight of its contents (in pounds), its price in dollars, its dimensions (width, depth, and height) in inches, and the number available (inventory). The **Products** table records information about products stocked by the packing store for its customers. For each product, it stores the product name, customer name, weight (in pounds), and dimensions (as in **Boxes**). The type of each attribute appears directly below its name. **Primary key attributes** are underlined.

When asked for queries, you must provide answers that work for all possible database instances, not just the example instance depicted below. For brevity, relational algebra expressions abbreviate the schemas of the **Boxes** and **Products** tables as $B(N, S, L, P, W, D, H, I)$ and $P(N, C, L, W, D, H)$, respectively.

The following tables are repeated on the last page of the midterm. You may detach that page and use it for reference. There is no need to reattach it.

<table>
<thead>
<tr>
<th>name</th>
<th>supplier</th>
<th>load</th>
<th>price</th>
<th>width</th>
<th>depth</th>
<th>height</th>
<th>num</th>
</tr>
</thead>
<tbody>
<tr>
<td>small cube</td>
<td>box-o-rama</td>
<td>10.5</td>
<td>2.99</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>large cube</td>
<td>box-o-rama</td>
<td>20.0</td>
<td>4.99</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>42</td>
</tr>
<tr>
<td>small cube</td>
<td>box world</td>
<td>1.0</td>
<td>1.99</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>economy pack</td>
<td>box world</td>
<td>1.5</td>
<td>0.99</td>
<td>9</td>
<td>12</td>
<td>0.25</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pname</th>
<th>customer</th>
<th>weight</th>
<th>width</th>
<th>depth</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDR</td>
<td>Alice Armstrong</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>bookshelf speaker</td>
<td>Bob Beeri</td>
<td>15</td>
<td>24</td>
<td>13</td>
<td>16</td>
</tr>
</tbody>
</table>

1. (1 pt.) Write your name in the space provided above.
2. (5 pts.) What is the primary key of X in the following E-R diagram?

3. (5 pts.) Using the method discussed in class, generate the relational schema for the entity sets X and W for the E-R diagram of Question 2. Underline primary-key attributes.

4. (5 pts.) Suppose an E-R diagram D has five double diamonds. For each of the following statements, indicate whether the statement is definitely true, definitely false, or neither (could be true or false) by writing True, False, or Neither, respectively, in the provided spaces.

(a) There are exactly four double boxes in D.
(b) There are exactly five double boxes in D.
(c) There are exactly six double boxes in D.
(d) There are no single boxes in D.
(e) There is exactly one single box in D.
(f) There are exactly five single boxes in D.
5. (5 pts.) Suppose the following is a valid instance:

<table>
<thead>
<tr>
<th>BirdCounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Some of the following functional dependencies are **definitely false** (i.e., they definitely do not hold in BirdCounts). Circle the dependencies that are definitely false:

- \(A \rightarrow B \)
- \(B \rightarrow A \)
- \(F \rightarrow A \)
- \(E \rightarrow F \)
- \(F \rightarrow E \)
- \(ABCD \rightarrow EF \)
- \(EF \rightarrow ABCD \)
- \(ABCDE \rightarrow F \)
- \(ABC \rightarrow DEF \)
- \(C \rightarrow D \)

6. (4 pts.) Consider a relation \(R(A, B, C, D, E, F) \) with the following basis set of functional dependencies:

- \(A \rightarrow BCF \)
- \(B \rightarrow C \)
- \(DE \rightarrow A \)
- \(CF \rightarrow E \)

Compute \(\{A, C\}^+ \).
7. (5 pts.) List all the keys of the relation R of Question 6. (A copy of R’s schema appears on the scratch page.)

9. (5 pts.) Consider a relation $S(A, B, C, D, E)$. If $\{AC \rightarrow E\}$ is a basis set of S’s functional dependencies, list all possible lossless decompositions of S.
10. (5 pts.) The price per unit volume (PPUV) for a box is defined as the ratio of the box’s price (in dollars) to the box’s volume (in cubic inches). Write a SQL statement that creates a view BoxesPPUV(name, supplier, load, ppuv) consisting of tuples of the form \((n, s, l, x)\), where \(x\) and \(l\) are, respectively, the PPUV and the load for the box named \(n\) from supplier \(s\).

11. (5 pts.) We wish to compute a bar chart that indicates how PPUV (see Question 10) varies with box loads. We will use 10-pound-wide ranges for loads in the bar chart: \([0, 10), [10, 20), [20, 30), \ldots\). Write a SQL query that produces a list of tuples of the form \((r, p)\) where \(p\) is the average PPUV of boxes with loads in the range \([r, r + 10)\). The list should be sorted in ascending order of \(r\). Skip empty ranges (bar chart buckets with no entries). [Hints: You may use views, including the one defined in Question 10. The function \(\text{floor}(x)\), which returns \([x]\), may be useful.]
12. (5 pts.) Consider the bar chart of Question 11. Write a SQL query to find the bar chart ranges (lower ends of the intervals) that have the maximum values (average PPUV values). The desired output is a list of tuples of the form (r) sorted in ascending order of r.
The following schema is for the relation in Question 6:

\[R(A, B, C, D, E, F) \]

\[A \rightarrow BCF \]
\[B \rightarrow C \]
\[DE \rightarrow A \]
\[CF \rightarrow E \]