we ensure that
and setting
from the set

We are given a black-box that outputs numbers independently and uniformly at random

Suppose we only need a “weak estimate” (P2) Show that
Suppose we can draw independent random samples
we want to draw some t such samples, and output the estimate
Our main goal is that with probability at least 1 − δ, the absolute value of the difference between our estimate and

We now explore how to solve this problem. Suppose the value
We now explore how to solve this problem. Suppose the value

1. We have a random variable X whose distribution is some D; our aim is to estimate E[X] using “not too many” samples from D. Suppose we can draw independent random samples
we proceed
as follows, for

Let

Suppose X is a Poisson random variable with mean λ; i.e., X takes values in the non-negative integers, with

3 (*). We are given a black-box that outputs numbers independently and uniformly at random from the set \{1, 2, \ldots, 2n\}. We use this to construct a random permutation \(\pi\) of \{1, 2, \ldots, n\} as follows. We will construct a one-to-one function \(f : \{1, 2, \ldots, n\} \to \{1, 2, \ldots, 2n\}\), and then output the numbers in \{1, 2, \ldots, n\} in the order of their \(f(\cdot)\) values. To construct \(f\), we proceed as follows, for \(j = 1, 2, \ldots, n\): choose \(f(j)\) by repeatedly obtaining numbers from the black-box, and setting \(f(j)\) to be the first number found such that \(f(j) \neq f(i)\) for all \(i < j\). (Note that we ensure that \(f\) is one-to-one.)

Let \(X\) denote the number of calls to the black-box.
• Prove that we output a permutation that is chosen uniformly at random from the set of all $n!$ permutations.

• Find the value of $\mathbf{E}[X]$.

• Show that there is a constant $C > 0$ such that for all n large enough, $\Pr[X \geq 2 \cdot \mathbf{E}[X]] \leq e^{-Cn}$.