Networking Support In Java

Nelson Padua-Perez
Chau-Wen Tseng

Department of Computer Science
University of Maryland, College Park

Advanced Programming Concepts

- Objected-oriented support in Java for
 - Exception handling
 - Streams
 - Threads
 - Graphics user interfaces (GUIs)
 - Networking

- Look at networking as example of OO design
Overview

- Networking
 - Background
 - Concepts
 - Java’s object-oriented view
 - Java’s networking API
 (Application Program Interface)
 - Network applications

This lecture

Next lecture

Networking Background

- Definition
 - Set of computers using common protocols to communicate over connecting media

- History
 - 1969 ARPANET
 - 1986 NSFnet
 - 1995 Internet
Networking Concepts

- Protocols
- Network model
- Internet addresses
- Ports
- Sockets
- URLs
- Reliability
- Connection vs. packet oriented
- TCP vs. UDP

Protocols

- Definition
 - Formal description of formats and rules
- Used for
 - Message formats
 - Sequence & order of actions
- Needed by computers to exchange information
- Vital for networking
Protocols – Email Delivery

Network Model

- Open Systems Interconnection (OSI) model
 - Multiple layers (7)
 - One function each
 - Each layer relies on previous layer

- Designed to reduce complexity using abstraction
Network Model – Layers

- Physical layer
 - Transmit data as 0’s and 1’s over connection
- Data-link layer
 - Between two physically connected computers
- Network layer
 - Between any two computers connected to network
- Transport layer
 - Deliver network data to application
- Application layer
 - Between two applications using network

Network Model – VOIP Example

- Voice over IP (VOIP)
Internet (IP) Address

- Unique address for machine on internet
 - Get from ISP when connecting to internet
 - Allows network to find your machine

- Format
 - 32-bit unsigned integer ⇒ 128.8.128.8
 - Domain name ⇒ cs.umd.edu

- Name and address for local machine
 - Localhost
 - 127.0.0.1

Internet (IP) Address

- Domain Name System (DNS)
 - DNS servers on internet
 - Can look up IP address associated with name
 - DNS server may need to query other DNS servers
 - edu DNS server queries umd.edu server to find cs.umd.edu

- Machine can have multiple IP addresses
 - Virtual machines
Internet (IP) Address

Problem
- Running out of 32-bit IP addresses
- Caused by initial address allocation
 - Stanford & MIT given more IP addresses than China
- Switching to 128-bit IP addresses in IPv6
 - 1+ million addresses per square meter on Earth

Ports

Abstraction to identify (refine) destination
- Provide multiple destinations at single IP address

Format
- Unsigned 16-bit integer (0 to 65,535)
- Ports 0 to 4096 often reserved & restricted

Many ports pre-assigned to important services
- 21 ftp (file transfer)
- 23 telnet (remote terminal)
- 25 SMTP (email)
- 80 http (web)
- …
Sockets

- Application-level abstraction
 - Represents network connection
 - Implemented in software
 - Supports both UDP and TCP protocols

- History
 - Introduced in Berkley UNIX in 1980s
 - Networking API

Sockets

- Socket is bound to port number
 - Receives data packet
 - Relays to specific port
Uniform Resource Locators (URLs)

- Represent web resources
 - Web pages
 - Arbitrary files
 - ...

- Examples
 - https://login.yahoo.com/
 - file://dir/my.txt

Uniform Resource Locators (URLs)

- Consists of
 - Protocol
 - http
 - ftp
 - https (secure http)
 - file
 - ...
 - IP address (or domain name)
 - Port (optional)
 - Reference to anchor (optional)
Reliability

- **Reliable**
 - Data guaranteed to
 - Arrive in order
 - More overhead
 - Slower

- **Unreliable**
 - Data not guaranteed to
 - Arrive \(\Rightarrow\) lost data
 - Arrive in order \(\Rightarrow\) out of order data
 - Less overhead
 - Faster
 - Transfers responsibility to higher layer
 - Extra work for higher layer
 - Compensate with timeouts
 - Estimate packet lost if longer than average round trip
Reliability

- Reliable layers
 - Data-link

- Unreliable layers
 - Physical
 - Network

- Can be either
 - Transport
 - Reliable \Rightarrow TCP
 - Unreliable \Rightarrow UDP
 - Application

Ways To Connect

1. Connection-oriented
2. Packet-oriented
Connection Oriented

Approach
- Reserve (single) communication channel
- Send stream of data along channel

Also called
- Circuit switching
- Stream oriented

Example
- Telephone call (current)

Connection Oriented

Protocol

```
+-------------------------+-------------------------+
| Server                  | Client                  |
+-------------------------+-------------------------+
| Create Server Socket    | Create Socket           |
|                         | Establish Connection    |
| Accept                  | Communicate             |
| Read/Write              | Read/Write              |
| Close Socket            | Close Socket            |
+-------------------------+-------------------------+```
Connection Oriented

**Advantages**
- Simpler scheme
- Easier to use
- Higher quality communication
  - Less likely to lose data (at network layer)

Packet Oriented

**Approach**
- Break message up into packets
- Transmit packets separately
- Assemble packets at destination

**Also called**
- Packet switching
- Connectionless

**Example**
- US Mail
- VOIP (Voice over IP)
Packet Oriented

Protocol

Advantages

- Can share communication channel
- Higher utilization of channels
- Can utilize multiple channels at once
- Can reroute around failed channels
Internet

- **Network layer**
  - Internet Protocol (IP)

- **Transport layer**
  - User Datagram Protocol (UDP)
  - Transmission Control Protocol (TCP)
Internet Protocol (IP)

- Packet oriented
- Packets **routed** between computers
- Unreliable

User Datagram Protocol (UDP)

- Packet oriented
- Message split into datagrams
- Send datagrams as packets on network layer
- Unreliable but fast
- Application must deal with lost packets
- Examples
  - Ping
  - Streaming multimedia
  - Online games
Transmission Control Protocol (TCP)

- Connection oriented
- Message split into datagrams
- Send datagrams as packets on network layer
- Provides illusion of reliable connection
  - Extra messages between sender / recipient
  - Resend packets if necessary
  - Ensure all packets eventually arrive
  - Store packets and process in order

Transmission Control Protocol (TCP)

- Reliable but slower
- Application can treat as reliable connection
  - Despite unreliability of underlying IP (network)
- Examples
  - ftp (file transfer)
  - telnet (remote terminal)
  - http (web)