Algorithmic Complexity 2

Nelson Padua-Perez
Chau-Wen Tseng

Department of Computer Science
University of Maryland, College Park

Overview

- Critical sections
- Recurrence relations
- Comparing complexity
- Types of complexity analysis
Analyzing Algorithms

Goal
- Find asymptotic complexity of algorithm

Approach
- Ignore less frequently executed parts of algorithm
- Find critical section of algorithm
- Determine how many times critical section is executed as function of problem size

Critical Section of Algorithm

Heart of algorithm
Dominates overall execution time

Characteristics
- Operation central to functioning of program
- Contained inside deeply nested loops
- Executed as often as any other part of algorithm

Sources
- Loops
- Recursion
Critical Section Example 1

- Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++)
 3. B
 4. C

- Code execution
 - A ⇒
 - B ⇒ n times
 - C ⇒
 - Time ⇒

- Time ⇒ 1 + n + 1 = O(n)
Critical Section Example 2

Code (for input size n)
1. A
2. for (int $i = 0; i < n; i++$)
3. B
4. for (int $j = 0; j < n; j++$)
5. C
6. D

Code execution
- A \Rightarrow B \Rightarrow C \Rightarrow
- B \Rightarrow D \Rightarrow
- Time \Rightarrow

Critical Section Example 2

Code (for input size n)
1. A
2. for (int $i = 0; i < n; i++$)
3. B
4. for (int $j = 0; j < n; j++$)
5. \[\text{critical section} \]
6. D

Code execution
- A \Rightarrow once \quad C \Rightarrow n^2 times
- B \Rightarrow n times \quad D \Rightarrow once
- Time \Rightarrow $1 + n + n^2 + 1 = O(n^2)$
Critical Section Example 3

Code (for input size \(n \))
1. \(A \)
2. for (int \(i = 0; i < n; i++ \))
3. for (int \(j = i+1; j < n; j++ \))
4. \(B \)

Code execution
- \(A \) ⇒
- \(B \) ⇒
- Time ⇒

Time ⇒ 1 + \(\frac{1}{2} n^2 \) = \(O(n^2) \)
Critical Section Example 4

Code (for input size n)
1. A
2. for (int i = 0; i < n; i++)
3. for (int j = 0; j < 10000; j++)
4. B

Code execution
- A ⇒
- B ⇒
- Time ⇒

Time ⇒ 1 + 10000 n = O(n)
Critical Section Example 5

Code (for input size n)
1. for (int i = 0; i < n; i++)
2. for (int j = 0; j < n; j++)
3. A
4. for (int i = 0; i < n; i++)
5. for (int j = 0; j < n; j++)
6. B

Code execution
- A ⇒
- B ⇒
- Time ⇒

Time ⇒ $n^2 + n^2 = O(n^2)$
Critical Section Example 6

Code (for input size n)

1. $i = 1$
2. while ($i < n$)
3. A
4. $i = 2 \times i$
5. B

Code execution

A \Rightarrow
B \Rightarrow
Time \Rightarrow

Time $\Rightarrow \log(n) + 1 = O(\log(n))$
Critical Section Example 7

Code (for input size n)

1. DoWork (int n)
2. if ($n == 1$)
3. A
4. else
5. DoWork($n/2$)
6. DoWork($n/2$)

Code execution

- $A \Rightarrow$
- $DoWork(n/2) \Rightarrow$
- $Time(1) \Rightarrow$ $Time(n) =$

Critical Section Example 7

Code (for input size n)

1. DoWork (int n)
2. if ($n == 1$)
3. A
4. else
5. DoWork($n/2$)
6. DoWork($n/2$)

Code execution

- $A \Rightarrow 1$ times
- $DoWork(n/2) \Rightarrow 2$ times

$Time(1) \Rightarrow 1$ $Time(n) = 2 \times Time(n/2) + 1$
Recursive Algorithms

Definition
- An algorithm that calls itself

Components of a recursive algorithm
1. Base cases
 - Computation with no recursion
2. Recursive cases
 - Recursive calls
 - Combining recursive results

Recursive Algorithm Example

Code (for input size n)
1. DoWork (int n)
2. if (n == 1)
3. A
4. else
5. DoWork(n/2)
6. DoWork(n/2)
Recurrence Relations

Definition
- Value of a function at a point is given in terms of its value at other points

Examples
- $T(n) = T(n-1) + k$
- $T(n) = T(n-1) + n$
- $T(n) = T(n-1) + T(n-2)$
- $T(n) = T(n/2) + k$
- $T(n) = 2 \times T(n/2) + k$

Recurrence Relations

Base case
- Value of function at some specified points
- Also called boundary values / boundary conditions

Base case example
- $T(1) = 0$
- $T(1) = 1$
- $T(2) = 1$
- $T(2) = k$
Solving Recurrence Equations

- Back substitution (iteration method)
 - Iteratively substitute recurrence into formula

- Example
 - \(T(1) = 5 \)
 - \(T(n) = T(n-1) + 1 = (T(n-2) + 1) + 1 \)
 - \(= ((T(n-3) + 1) + 1) + 1 \)
 - \(= (((T(n-4) + 1) + 1) + 1) + 1 \)
 - \(= \ldots \)
 - \(= (\ldots(T(1) + 1) + \ldots) + 1 \)
 - \(= (\ldots(5 + 1) + \ldots) + 1 \)
 - \(= n + 4 \)

Example Recurrence Solutions

- Examples
 - \(T(n) = T(n-1) + k \quad \Rightarrow O(n) \)
 - \(T(n) = T(n-1) + n \quad \Rightarrow O(n^2) \)
 - \(T(n) = T(n-1) + T(n-2) \quad \Rightarrow O(n!) \)
 - \(T(n) = T(n/2) + k \quad \Rightarrow O(\log(n)) \)
 - \(T(n) = 2 \times T(n/2) + k \quad \Rightarrow O(n) \)
 - \(T(n) = 2 \times T(n-1) + k \quad \Rightarrow O(2^n) \)

- Many additional issues, solution methods
 - Take CMSC 351 – Introduction to Algorithms
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>O(log(n))</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>O(n)</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>O(n log(n))</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>O(n^3)</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>O(n^k)</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>O(k^n)</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
</tbody>
</table>

From smallest to largest
For size n, constant k > 1

Comparing Complexity

- Compare two algorithms
 - f(n), g(n)
- Determine which increases at faster rate
 - As problem size n increases
- Can compare ratio
 - If \(\infty \), f() is larger
 - If 0, g() is larger
 - If constant, then same complexity

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)}
\]
Complexity Comparison Examples

\[\log(n) \text{ vs. } n^{\frac{1}{2}} \]

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\log(n)}{n^{\frac{1}{2}}} = 0
\]

\[1.001^n \text{ vs. } n^{1000} \]

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{1.001^n}{n^{1000}}
\]

Not clear, use L’Hopital’s Rule

L’Hopital’s Rule

If ratio is indeterminate

\[0 / 0 \text{ or } \infty / \infty \]

Ratio of derivatives computes same value

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}
\]

Can simplify ratio by repeatedly taking derivatives of numerator & denominator
Using L’Hopital’s Rule

1.001^n vs. n^{1000}

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \rightarrow \lim_{n \to \infty} \frac{1.001^n}{n^{1000}}
\]

\[
\rightarrow \lim_{n \to \infty} \frac{n \cdot 1.001^{n-1}}{1000 \cdot n^{999}}
\]

\[
\rightarrow \lim_{n \to \infty} \frac{n \cdot (n-1) \cdot 1.001^{n-2}}{1000 \times 999 \cdot n^{998}}
\]

\[
\rightarrow \ldots \rightarrow \infty
\]

Additional Complexity Measures

Upper bound
- Big-O \(\Rightarrow O(\ldots) \)
- Represents upper bound on # steps

Lower bound
- Big-Omega \(\Rightarrow \Omega(\ldots) \)
- Represents lower bound on # steps

Combined bound
- Big-Theta \(\Rightarrow \Theta(\ldots) \)
- Represents combined upper/lower bound on # steps
- Best possible asymptotic solution
2D Matrix Multiplication Example

Problem

\[C = A \times B \]

Lower bound

\[\Omega(n^2) \] Required to examine 2D matrix

Upper bounds

\[O(n^3) \] Basic algorithm
\[O(n^{2.807}) \] Strassen’s algorithm (1969)
\[O(n^{2.376}) \] Coppersmith & Winograd (1987)

Improvements still possible (open problem)

- Since upper & lower bounds do not match

Additional Complexity Categories

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>Nondeterministic polynomial time (NP)</td>
</tr>
<tr>
<td>PSPACE</td>
<td>Polynomial space</td>
</tr>
<tr>
<td>EXPSPACE</td>
<td>Exponential space</td>
</tr>
<tr>
<td>Decidable</td>
<td>Can be solved by finite algorithm</td>
</tr>
<tr>
<td>Undecidable</td>
<td>Not solvable by finite algorithm</td>
</tr>
</tbody>
</table>

Mostly of academic interest only

- Quadratic algorithms usually too slow for large data
- Use fast heuristics to provide non-optimal solutions
NP Time Algorithm

- Polynomial solution possible
 - If make correct guesses on how to proceed
- Required for many fundamental problems
 - Boolean satisfiability
 - Traveling salesman problem (TLP)
 - Bin packing
- Key to solving many optimization problems
 - Most efficient trip routes
 - Most efficient schedule for employees
 - Most efficient usage of resources

NP Time Algorithm

- Properties of NP
 - Can be solved with exponential time
 - Not proven to require exponential time
 - Currently solve using heuristics
- NP-complete problems
 - Representative of all NP problems
 - Solution can be used to solve any NP problem
 - Examples
 - Boolean satisfiability
 - Traveling salesman
P = NP?

- Are NP problems solvable in polynomial time?
 - Prove $P=NP$
 - Show polynomial time solution exists for any NP-complete problem
 - Prove $P \neq NP$
 - Show no polynomial-time solution possible
 - The expected answer

- Important open problem in computer science
 - 1 million prize offered by Clay Math Institute

Algorithmic Complexity Summary

- Asymptotic complexity
 - Fundamental measure of efficiency
 - Independent of implementation & computer platform

- Learned how to
 - Examine program
 - Find critical sections
 - Calculate complexity of algorithm
 - Compare complexity