Recursive Algorithms

Nelson Padua-Perez
Chau-Wen Tseng
Department of Computer Science
University of Maryland, College Park

Algorithm

- Finite description of steps for solving problem

Problem types
- Satisfying ⇒ find any legal solution
- Optimization ⇒ find best solution (vs. cost metric)

Approaches
- Iterative ⇒ execute action in loop
- Recursive ⇒ reapply action to subproblem(s)
Recursive Algorithm

Definition
- An algorithm that calls itself

Approach
1. Solve small problem directly
2. Simplify large problem into 1 or more smaller subproblem(s) & solve recursively
3. Calculate solution from solution(s) for subproblem

Algorithm Format

1. Base case
 - Solve small problem directly
2. Recursive step
 - Simplify problem into smaller subproblem(s)
 - Recursively apply algorithm to subproblem(s)
 - Calculate overall solution
Example – Find

To find an element in an array

- **Base case**
 - If array is empty, return false

- **Recursive step**
 - If 1st element of array is given value, return true
 - Skip 1st element and recur on remainder of array

Example – Count

To count # of elements in an array

- **Base case**
 - If array is empty, return 0

- **Recursive step**
 - Skip 1st element and recur on remainder of array
 - Add 1 to result
Example – Factorial

Factorial definition
- \(n! = n \times n-1 \times n-2 \times n-3 \times \ldots \times 3 \times 2 \times 1 \)
- \(0! = 1 \)

To calculate factorial of \(n \)
- **Base case**
 - If \(n = 0 \), return 1
- **Recursive step**
 - Calculate the factorial of \(n-1 \)
 - Return \(n \times \) (the factorial of \(n-1 \))

Example – Factorial

Code

```c
int fact ( int n ) {
    if ( n == 0 ) return 1;       // base case
    return n * fact(n-1);         // recursive step
} 
```
Requirements

- Must have
 - Small version of problem solvable without recursion
 - Strategy to simplify problem into 1 or more smaller subproblems
 - Ability to calculate overall solution from solution(s) to subproblem(s)

Making Recursion Work

- Designing a correct recursive algorithm
- Verify
 1. Base case is
 - Recognized correctly
 - Solved correctly
 2. Recursive case
 - Solves 1 or more simpler subproblems
 - Can calculate solution from solution(s) to subproblems
- Uses principle of *proof by induction*
Proof By Induction

- Mathematical technique
- A theorem is true for all $n \geq 0$ if
 1. **Base case**
 - Prove theorem is true for $n = 0$, and
 2. **Inductive step**
 - Assume theorem is true for n (inductive hypothesis)
 - Prove theorem must be true for $n+1$

Recursion vs. Iteration

- Problem may usually be solved either way
 - Both have advantages
- Iterative algorithms
 - May be more efficient
 - No additional function calls
 - Run faster, use less memory
Recursion vs. Iteration

- **Recursive algorithms**
 - Higher overhead
 - Time to perform function call
 - Memory for activation records (call stack)
 - May be simpler algorithm
 - Easier to understand, debug, maintain
 - Natural for backtracking searches
 - Suited for recursive data structures
 - Trees, graphs...

Example – Factorial

- **Recursive algorithm**
  ```c
  int fact ( int n ) {
    if ( n == 0 ) return 1;
    return n * fact(n-1);
  }
  ```

- **Iterative algorithm**
  ```c
  int fact ( int n ) {
    int i, res;
    res = 1;
    for (i=n; i>0; i--) {
      res = res * i;
    }
    return res;
  }
  ```

Recursive algorithm is closer to factorial definition
Example – Towers of Hanoi

Problem
- Move stack of disks between pegs
- Can only move top disk in stack
- Only allowed to place disk on top of larger disk

To move a stack of n disks from peg X to Y
- **Base case**
 - If $n = 1$, move disk from X to Y
- **Recursive step**
 1. Move top $n-1$ disks from X to 3^{rd} peg
 2. Move bottom disk from X to Y
 3. Move top $n-1$ disks from 3^{rd} peg to Y

Recursive algorithm is simpler than iterative solution
Types of Recursion

Tail recursion
- Single recursive call at end of function
- Example
  ```c
  int tail( int n ) {
      ...
      return function( tail(n-1) );
  }
  ```
- Can easily transform to iteration (loop)

Non-tail recursion
- Recursive call(s) not at end of function
- Example
  ```c
  int nontail( int n ) {
      ...
      int x = nontail(n-1) ;
      int y = nontail(n-2) ;
      int z = x + y;
      return z;
  }
  ```
- Can transform to iteration using explicit stack
Possible Problems – Infinite Loop

- Infinite recursion
 - If recursion not applied to simpler problem

    ```c
    int bad ( int n ) {
      if ( n == 0 ) return 1;
      return bad(n);
    }
    ```

 - Will infinite loop
 - Eventually halt when runs out of (stack) memory
 - Stack overflow

Possible Problems – Inefficiency

- May perform excessive computation
 - If recomputing solutions for subproblems

- Example
 - Fibonacci numbers
 - fibonacci(0) = 1
 - fibonacci(1) = 1
 - fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
Possible Problems – Inefficiency

- Recursive algorithm to calculate fibonacci(n)
 - If n is 0 or 1, return 1
 - Else compute fibonacci(n-1) and fibonacci(n-2)
 - Return their sum

- Simple algorithm \Rightarrow exponential time $O(2^n)$
 - Computes fibonacci(1) 2^n times

- Can solve efficiently using
 - Iteration
 - Dynamic programming
 - Will examine different algorithm strategies later...