Graphs & Graph Algorithms 2

Nelson Padua-Perez
Chau-Wen Tseng

Department of Computer Science
University of Maryland, College Park

Overview

- Spanning trees
- Minimum spanning tree
 - Kruskal’s algorithm
- Shortest path
 - Djikstra’s algorithm
- Graph implementation
 - Adjacency list / matrix
Spanning Tree

- Tree connecting all nodes in graph
- N-1 edges for N nodes
- Can build tree during traversal

Spanning Tree Construction

for all nodes X
 set X.tag = False
 set X.parent = Null
{ Discovered } = { 1st node }
while ({ Discovered } ≠ ∅)
 take node X out of { Discovered }
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 set Y.parent = X // add (X,Y) to tree
 add Y to { Discovered }
Breadth & Depth First Spanning Trees

Depth-First Spanning Tree Example
Breadth-First Spanning Tree Example

Spanning Tree Construction

- Multiple spanning trees possible
 - Different breadth-first traversals
 - Nodes same distance visited in different order
 - Different depth-first traversals
 - Neighbors of node visited in different order
 - Different traversals yield different spanning trees
Minimum Spanning Tree (MST)

- Spanning tree with minimum total edge weight
- Multiple MSTs possible (with same weight)

MST – Kruskal’s Algorithm

sort edges by weight (from least to most)

tree = ∅

for each edge (X,Y) in order

 if it does not create a cycle
 add (X,Y) to tree

stop when tree has N–1 edges

Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm

When does adding \((X,Y)\) to tree create cycle?

1. **Traversal approach**
 1. Traverse tree starting at \(X\)
 2. If we can reach \(Y\), adding \((X,Y)\) would create cycle

2. **Connected subgraph approach**
 1. Maintain set of nodes for each connected subgraph
 2. Initialize one connected subgraph for each node
 3. If \(X\), \(Y\) in same set, adding \((X,Y)\) would create cycle
 4. Otherwise
 - We can add edge \((X,Y)\) to spanning tree
 - Merge sets containing \(X\), \(Y\) (single subgraph)
MST – Connected Subgraph Example

1. \(A \) \(B \)
 \{A\} \{B\} \{C\} \{D\}
 \(\langle A, B \rangle \) Include, since it connects two nodes in distinct sets

2. \(A \) \(5 \) \(B \)
 \{A, B\} \{C\} \{D\}
 \(\langle A, C \rangle \) Include, since it connects two nodes in distinct sets

MST – Connected Subgraph Example

3. \(A \) \(5 \) \(B \)
 \{A, B, C\} \{D\}
 \(\langle B, C \rangle \) Reject, since it connects nodes in the same set and would create a cycle

4. \(A \) \(5 \) \(B \)
 \{A, B, C\} \{D\}
 \(\langle C, D \rangle \) Include, since it connects two nodes in distinct sets
Single Source Shortest Path

- Common graph problem
 - Find path from X to Y with lowest edge weight
 - Find path from X to any Y with lowest edge weight

- Useful for many applications
 - Shortest route in map
 - Lowest cost trip
 - Most efficient internet route

- Can solve both problems with same algorithm

Shortest Path – Djikstra’s Algorithm

- Maintain
 - Nodes with known shortest path from start ⇒ \{ S \}
 - Cost of shortest path to node K from start ⇒ C[K]
 - Only for paths through nodes in \{ S \}
 - Predecessor to K on shortest path ⇒ P[K]
 - Updated whenever new (lower) C[K] discovered
 - Remembers actual path with lowest cost
 - Extension to algorithm in book
Shortest Path – Intuition for Djikstra’s

- At each step in the algorithm
 - Shortest paths are known for nodes in \{ S \}
 - Store in \(C[K] \) length of shortest path to node \(K \) (for all paths through nodes in \{ S \})
 - Add to \{ S \} next closest node

Shortest Path – Intuition for Djikstra’s

- Update distance to \(J \) after adding node \(K \)
 - Previous shortest paths already in \(C[K] \)
 - Possibly shorter path by going through node \(K \)
 - Compare \(C[J] \) to \(C[K] \)
 + weight of \((K,J)\)
Shortest Path – Djikstra’s Algorithm

Algorithm
- Add starting node to \{ S \}
- Repeat until all nodes in \{ S \}
 - Find node K not in \{ S \} with smallest C[K]
 - Add K to \{ S \}
 - Examine C[J] for all neighbors J of K not in \{ S \}
 - If \(C[K] + \text{weight for edge } (K,J) < C[J] \)
 - New shortest path by first going to K, then J
 - Update C[J] ← C[K] + weight for edge (K,J)
 - Update P[J] ← K

\(\{ S \} = \emptyset, P[] = \text{none for all nodes} \)
\(C[\text{start}] = 0, C[] = \infty \text{ for all other nodes} \)

while (not all nodes in \{ S \})
 find node K not in \{ S \} with smallest C[K]
 add K to \{ S \}
 for each node J not in \{ S \} adjacent to K
 if \(C[K] + \text{cost of } (K,J) < C[J] \)
 \(C[J] = C[K] + \text{cost of } (K,J) \)
 \(P[J] = K \)

Optimal solution computed with greedy algorithm
Dijkstra’s Shortest Path Example

- Initial state
- \(\{ S \} = \emptyset \)

<table>
<thead>
<tr>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 none</td>
</tr>
<tr>
<td>2</td>
<td>(\infty) none</td>
</tr>
<tr>
<td>3</td>
<td>(\infty) none</td>
</tr>
<tr>
<td>4</td>
<td>(\infty) none</td>
</tr>
<tr>
<td>5</td>
<td>(\infty) none</td>
</tr>
</tbody>
</table>

Find node K with smallest C[K] and add to \(\{ S \} \)

- \(\{ S \} = 1 \)

<table>
<thead>
<tr>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 none</td>
</tr>
<tr>
<td>2</td>
<td>(\infty) none</td>
</tr>
<tr>
<td>3</td>
<td>(\infty) none</td>
</tr>
<tr>
<td>4</td>
<td>(\infty) none</td>
</tr>
<tr>
<td>5</td>
<td>(\infty) none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 1 not in $\{S\}$
- $\{S\} = 1$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

$C[2] = \min (\infty, C[1] + (1,2)) = \min (\infty, 0 + 5) = 5$
$C[3] = \min (\infty, C[1] + (1,3)) = \min (\infty, 0 + 8) = 8$

Dijkstra’s Shortest Path Example

- Find node K with smallest $C[K]$ and add to $\{S\}$
- $\{S\} = 1, 2$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 2 not in $\{S\}$
- $\{S\} = 1, 2$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

$C[3] = \min(8, C[2] + (2,3)) = \min(8, 5 + 1) = 6$

$C[4] = \min(\infty, C[2] + (2,4)) = \min(\infty, 5 + 10) = 15$

Dijkstra’s Shortest Path Example

- Find node K with smallest $C[K]$ and add to $\{S\}$
- $\{S\} = 1, 2, 3$
Dijkstra’s Shortest Path Example

- Update C[K] for all neighbors of 3 not in { S }
- \(\{ S \} = 1, 2, 3 \)

<table>
<thead>
<tr>
<th>C</th>
<th>P</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>(\infty)</td>
<td>none</td>
</tr>
</tbody>
</table>

\[C[4] = \min (15, C[3] + (3,4)) = \min (15, 6 + 3) = 9 \]

Dijkstra’s Shortest Path Example

- Find node K with smallest C[K] and add to { S }
- \(\{ S \} = 1, 2, 3, 4 \)
Dijkstra’s Shortest Path Example

Update $C[K]$ for all neighbors of 4 not in $\{ S \}$

$\{ S \} = 1, 2, 3, 4$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

$C[5] = \min (\infty, C[4] + (4,5)) = \min (\infty, 9 + 9) = 18$

Dijkstra’s Shortest Path Example

Find node K with smallest $C[K]$ and add to $\{ S \}$

$\{ S \} = 1, 2, 3, 4, 5$

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- All nodes in \{ S \}, algorithm is finished
- \{ S \} = 1, 2, 3, 4, 5

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

Dijkstra’s Shortest Path Example

- Find shortest path from start to \(K \)
 - Start at \(K \)
 - Trace back predecessors in \(P[\] \)
- Example paths (in reverse)
 - \(2 \rightarrow 1 \)
 - \(3 \rightarrow 2 \rightarrow 1 \)
 - \(4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \)
 - \(5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \)
Graph Implementation

- **Representations**
 - Explicit edges (a,b)
 - Maintain set of edges for every node
 - Adjacency matrix
 - 2D array of neighbors
 - Adjacency list
 - Linked list of neighbors

- **Important for very large graphs**
 - Affects efficiency / storage

Adjacency Matrix

- **Representation**
 - 2D array
 - Position $j, k \Rightarrow$ edge between nodes n_j, n_k
 - Unweighted graph
 - Matrix elements \Rightarrow boolean
 - Weighted graph
 - Matrix elements \Rightarrow weight
Adjacency Matrix

Example

![Adjacency Matrix Example Diagram]

Properties

- Single array for entire graph
- Only upper / lower triangle matrix needed for undirected graph
- Since \(n_j, n_k \) implies \(n_k, n_j \)
Adjacency List

- Representation
 - Linked list for each node
 - Unweighted graph
 - store neighbor
 - Weighted graph
 - store neighbor, weight

Adjacency List

- Example
 - Unweighted graph

<table>
<thead>
<tr>
<th>Node</th>
<th>Neighbor List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 → 3</td>
</tr>
<tr>
<td>2</td>
<td>1 → 3 → 4</td>
</tr>
<tr>
<td>3</td>
<td>1 → 2 → 4 → 5</td>
</tr>
<tr>
<td>4</td>
<td>2 → 3 → 5</td>
</tr>
<tr>
<td>5</td>
<td>3 → 4 → 5</td>
</tr>
</tbody>
</table>

- Weighted graph

<table>
<thead>
<tr>
<th>Node</th>
<th>Neighbor List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2, 3.7) → (3, 5.0)</td>
</tr>
<tr>
<td>2</td>
<td>(1, 3.7) → (3, 1.0) → (4, 10.2)</td>
</tr>
<tr>
<td>3</td>
<td>(1, 5.0) → (2, 1.0) → (4, 8.0) → (5, 3.0)</td>
</tr>
<tr>
<td>4</td>
<td>(2, 10.2) → (3, 8.0) → (5, 1.5)</td>
</tr>
<tr>
<td>5</td>
<td>(3, 3.0) → (4, 1.5) → (5, 6.0)</td>
</tr>
</tbody>
</table>
Graph Space Requirements

- **Adjacency matrix**
 - $\frac{1}{2} N^2$ entries (for graph with N nodes, E edges)
 - Many empty entries for large graphs
 - Can implement as sparse array

- **Adjacency list**
 - E edges
 - Each edge stores reference to node & next edge

- **Explicit edges**
 - E edges
 - Each edge stores reference to 2 nodes

Graph Time Requirements

- **Complexity of operations**
 - For graph with N nodes, E edges

<table>
<thead>
<tr>
<th>Operation</th>
<th>Adj Matrix</th>
<th>Adj List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find edge</td>
<td>$O(1)$</td>
<td>$O(E/N)$</td>
</tr>
<tr>
<td>Insert node</td>
<td>$O(1)$</td>
<td>$O(E/N)$</td>
</tr>
<tr>
<td>Insert edge</td>
<td>$O(1)$</td>
<td>$O(E/N)$</td>
</tr>
<tr>
<td>Delete node</td>
<td>$O(N)$</td>
<td>$O(E)$</td>
</tr>
<tr>
<td>Delete edge</td>
<td>$O(1)$</td>
<td>$O(E/N)$</td>
</tr>
</tbody>
</table>