Advanced Tree Data Structures

Nelson Padua-Perez
Chau-Wen Tseng

Department of Computer Science
University of Maryland, College Park

Overview

- Binary trees
 - Balance
 - Rotation
- Multi-way trees
 - Search
 - Insert
Tree Balance

- **Degenerate**
 - Worst case
 - Search in $O(n)$ time

- **Balanced**
 - Average case
 - Search in $O(\log(n))$ time

Question
- Can we keep tree (mostly) balanced?

Self-balancing binary search trees
- AVL trees
- Red-black trees

Approach
- Select invariant (that keeps tree balanced)
- Fix tree after each insertion / deletion
 - Maintain invariant using rotations
- Provides operations with $O(\log(n))$ worst case
AVL Trees

Properties
- Binary search tree
- Heights of children for node differ by at most 1

Example

AVL Trees

History
- Discovered in 1962 by two Russian mathematicians, Adelson-Velskii & Landis

Algorithm
1. Find / insert / delete as a binary search tree
2. After each insertion / deletion
 a) If height of children differ by more than 1
 b) Rotate children until subtrees are balanced
 c) Repeat check for parent (until root reached)
Red-black Trees

Properties
- Binary search tree
- Every node is red or black
- The root is black
- Every leaf is black
- All children of red nodes are black
- For each leaf, same # of black nodes on path to root

Characteristics
- Properties ensures no leaf is twice as far from root as another leaf

Example
Red-black Trees

- **History**
 - Discovered in 1972 by Rudolf Bayer

- **Algorithm**
 - Insert / delete may require complicated bookkeeping & rotations

- **Java collections**
 - TreeMap, TreeSet use red-black trees

Tree Rotations

- **Changes shape of tree**
 - Move nodes
 - Change edges

- **Types**
 - Single rotation
 - Left
 - Right
 - Double rotation
 - Left-right
 - Right-left
Tree Rotation Example

Single right rotation

Node 4 attached to new parent
Example – Single Rotations

Example – Double Rotations
Multi-way Search Trees

Properties
- Generalization of binary search tree
- Node contains 1…k keys (in sorted order)
- Node contains 2…k+1 children
- Keys in jth child < jth key < keys in (j+1)th child

Examples

```
5   12
  2   8
```

```
5  8  15  33
  1  3  7  9
      19 21
```

Types of Multi-way Search Trees

- **2-3 tree**
 - Internal nodes have 2 or 3 children

- **Index search trie**
 - Internal nodes have up to 26 children (for strings)

- **B-tree**
 - $T = \text{minimum degree}$
 - Non-root internal nodes have $T-1$ to $2T-1$ children
 - All leaves have same depth
Multi-way Search Trees

Search algorithm
1. Compare key x to 1…k keys in node
2. If $x = \text{some key}$ then return node
3. Else if ($x < \text{key } j$) search child j
4. Else if ($x > \text{all keys}$) search child $k+1$

Example
- Search(17)

```
  5   12
 /     \
|       |
1  2  8  17
```

Insert algorithm
1. Search key x to find node n
2. If (n not full) insert x in n
3. Else if (n is full)
 a) Split n into two nodes
 b) Move middle key from n to n’s parent
 c) Insert x in n
 d) Recursively split n’s parent(s) if necessary
Multi-way Search Trees

Insert Example (for 2-3 tree)

- Insert(4)

![Insert Example Diagram](image)

Multi-way Search Trees

Insert Example (for 2-3 tree)

- Insert(1)

![Insert Example Diagram](image)
B-Trees

Characteristics
- Height of tree is $O(\log_T(n))$
- Reduces number of nodes accessed
- Wasted space for non-full nodes

Popular for large databases
- 1 node = 1 disk block
- Reduces number of disk blocks read