Due in class: Nov 17.

(1) Write out the proof in detail that justifies the correctness of the method described in class for saving space in the Floyd-Warshall algorithm. (Essentially, to define the matrix d^k, we use the same space as for d^{k-1}.)

(2) You are planning a long road trip to Los Angeles. We wish to find the shortest route to LA, but are not willing to spend more than C $\$$'s in tolls.

We can model this problem as follows: given a directed graph, where each edge has a length and a cost we wish to find the shortest length path from s to t (given an arbitrary pair of vertices) such that the total cost of the path does not exceed C. Moreover, we will assume that the cost of an edge is an integer. You have to design an algorithm with running time $O(f(n,m)C)$ where $f(n,m)$ is a polynomial function of the number of vertices n and the number of edges m in the network.

The input to the problem is: a directed graph G represented as an adjacency list a pair of vertices s,t, and an integer C. You have to output the shortest length path from s to t which has cost at most C.

(3) Problem 22 (page 330).

(4) Consider the problem of making change for n cents using the smallest number of coins. Assume that each coin’s value is an integer.

- Describe a greedy algorithm to make change consisting of quarters, dimes, nickels and pennies. Prove that your algorithm yields an optimal solution.
- Suppose that the available coins are powers of c, i.e., the denominations are c^0, \ldots, c^k for some integers $c > 1$ and $k \geq 1$. Show that the greedy algorithm gives an optimal solution.
- Give a set of coin denominations for which the greedy algorithm is not optimal. You should include pennies, so that there is a solution for every value n.