Toothpick Game

There are two players, A (Amanda) and B (Billy). They move alternately. In each move, A can pick either 1 or 4 toothpicks from the table. In each move, B can pick either 1, 3 or 5 toothpicks from the table. The winner of the game is the person who gets the last toothpick. (If there are 2 toothpicks, and for example its A’s move – then A must pick 1 toothpick, since it is not possible to pick 4 toothpicks.)

How do we find a winning strategy for A (if one exists)? We are interested in doing this for A since she is the smarter of the two, and knows dynamic programming!

We do this by defining two functions \(f \) and \(g \) (value of \(f(n) \) and \(g(n) \) is 0 or 1).

\[
f(n) = 1 \text{ iff there is a winning strategy for A given that it is A's move and there are } n \text{ toothpicks}
\]

\[
g(n) = 1 \text{ iff there is a winning strategy for A given that it is B's move and there are } n \text{ toothpicks}
\]

Assuming \(n > 5 \) (we can easily compute the function for small values of \(n \)) we can define \(f \) and \(g \) recursively as follows.

\[
f(n) = \max(g(n - 1), g(n - 4)).
\]

This is because A has a choice of picking either 1 or 4 toothpicks, clearly A will make the move that enables it to continue winning after its move (the function \(g \) gives us this information).

\[
g(n) = \min(f(n - 1), f(n - 3), f(n - 5)).
\]

We make the assumption that B will also be playing intelligently. If B makes an error (for example B picks 1 toothpick when \(f(n - 1) = 1 \) and \(f(n - 3) = 0 \), then from that point on A will win; clearly, picking 3 toothpicks was the right choice for B).

We can use the above equation to compute the \(f \) and \(g \) values (fill the rest of the table yourself).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A move</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B move</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Example for small values of \(n \).

Observe that if \(f(n) = 1 \) then the corresponding entry in the 3rd row tells A what move to make. If \(f(n) = 0 \) then it does not matter what move A makes (since neither move can guarantee a win). If \(g(n) = 0 \) then A cannot guarantee a win. As a result, the corresponding entry in the 4th row tells B what move to make. If \(g(n) = 1 \) then it does not matter what move B makes (neither move can guarantee B a win).