Introduction

- How do you assign order to events happening in a distributed system?
 - No central clock.
 - Theoretically impossible to fully synchronize clocks.
 - Decentralized
Outline

- Introduction
- The Partial Ordering
- Logical Clocks
- Total Ordering of Events
- Physical Clocks
- Applications
- Conclusion

The Partial Ordering

- Definition: “happened before”, denoted as →,
 1) If a and b are events in the same process, and a comes before b, then a → b.
 2) If a is the sending of a message by one process and b is the receipt of the same message by another process, then a → b.
 3) If a → b and b → c then a → c.
 Two distinct events a and b are said to be concurrent if a! → b and b! → a.
 4) a! → a for any event a.

• p1→p3, q1→q7
• p1→q2, q1→r4
• p1→q4, p1→r4, p3 concurrent q3
Logical Clocks

- Define clock $C_i(a)$ on processor P_i as a function that assigns a number to event “a”.
 - $C_i: a \rightarrow N_0$
- Define $C(a) = C_i(a)$ if a is an event on P_i.
- Clock Condition:
 - For all a,b: if $a \rightarrow b$, then $C_i(a) < C_i(b)$

Logical Clocks: Satisfying clock condition

- IR1. Each process P_i increments C_i between any two successive events.
- IR2.
 - (a) If event a is the sending of a message m by process P_i, then the message m contains a timestamp $T_m = C_i(a)$.
 - (b) Upon receiving a message m, process P_i sets C_i greater than or equal to its present value and greater than T_m.
Total Ordering of Events

- Using logical clocks it is simple to produce a total ordering of events (\Rightarrow)
 - $a \Rightarrow b$ if and only if either
 1. $C_i(a) < C_j(b)$
 2. $C_i(a) = C_j(b)$ and $P_i < P_j$.
 - $a \rightarrow b$ implies $a \Rightarrow b$

Outline

- Background
- The Partial Ordering
- Logical Clocks
- Total Ordering of Events
 - Physical Clocks
- Applications
- Conclusion
Strong Clock Condition

- What happens when some communication is out of band?
 - Remember IR2 (b) condition
 - Upon receiving a message \(m \), process \(P_i \) sets \(C_i \) greater than or equal to its present value and greater than \(T_m \).
 - Because message was send out of band, it is possible that \(a \rightarrow b \), but \(C^{<a>} > C^{} \).

- Strong Clock Condition
 - Let \(a \rightarrow b \), as a happening before \(b \).
 - For any events \(a, b \) in \(L \), if \(a \rightarrow b \) then \(C^{<a>} < C^{} \).

Physical Clock

- Introduce a physical clock
 - Accurate
 - There exists a constant \(\kappa \ll 1 \), such that for all \(i \):
 \[
 \text{sgn} \left(\frac{dC_i(t)}{dt} - 1 \right) < \kappa
 \]
 - Synchronized
 - For all \(i, j \):
 \[
 \left| C_i(t) - C_j(t) \right| < \varepsilon
 \]

- Avoid anomalous behavior
 - For any \(i, j, t \):
 \[
 C_i(t + \mu) - C_j(t) > 0
 \]
 Where \(\mu \) is the transmission speed.
 - \(\varepsilon/(1- \kappa) \leq \mu \) must hold
Physical Clock: Synchronization

- When P_i sends a message m at physical time t to P_j, m contains a timestamp $T_m = C(t)$.
- Upon receiving a message m at time t', process P_j sets $C_j(t') = \max(C_j(t' - 0), T_m + \text{min delay})$.
- Theorem states that given the bounds on maximum number of hops and if messages are sent frequently enough, synchronization condition holds:
 - For all i, j: $|C_i(t) - C_j(t)| < \varepsilon$

Applications

- Granting exclusive right to a resource
 - Use logical clocks to assign ordering to requests (done individually at each process)
 - Move on to next task as soon as got confirmation of a release.
- Updates in Peer-to-Peer network
Conclusion

- Questions?