The Quadrics Network
High Performance Clustering Technology

Fabrizio Petrini
Wu-chun Feng
Adolfy Hoisie
Salvador Coll
Eitan Frachtenburg
Los Alamos National Laboratory

What is the Quadrics Network?
It’s a distributed virtual memory system

Featuring:
• Single global virtual address space
• Fault tolerance

Presentation Outline
• Quadrics network anatomy
• Implementation of global virtual memory
• Libraries
• Experimental results

Virtual Memory
• Every process has virtual address space
• On each memory access:
 – Processor reads process’s page table
 – Page table converts virtual address to physical address
 – Memory access performed with physical address

Global Virtual Memory
• Virtual memory space spans all processors
• Process can access page located on remote memory transparently

The Quadrics Network
• “Elan” network interface - PCI card in each node
• “Elite” communication switches
• Multiple communication libraries
 – allow custom protocols
 – library trade-off: performance vs. ease-of-use
Elan Network Interface

Elan’s microcode processor
Handles memory requests.
- 4 threads:
 - inputter
 - DMA engine
 - processor scheduling
 - command processing
- 2 stage pipeline / thread => 8 outstanding memory requests

Elan components
Thread processor:
- Implements messaging libraries
- 32 bit RISC + extra specialized instructions

MMU:
- Converts 32 bit virtual address -->
 - 28 bit SDRAM physical address, or
 - 48 bit PCI address
- 16 entry TLB

Elan components
Routing table
- Virtual process # --> tags to determine route

64MB SDRAM

8k Cache for SDRAM

Link logic
- 2 virtual channels
- 128 entry FIFO buffer

Quaternary Fat-Tree Network
- 4-ary n-tree (n=3 above) - each switch connects to 4 switches
- comprised of “Elite” crossbar switches

Elite switch
- 8 bi-directional links:
 - 2 virtual channels in each direction
- 400 MB/s bandwidth
- 35 ns latency
- CRC error detection between links
- 2 priority levels
Routing

- Elan router puts tag sequence in header
- Elite switch removes first tag, routes to next switch
- At data link level:
 - Elite partitions packet into “flits”
 - Flits sent independently
 - After last flit in packet, receiver sends ACK

Elan virtual memory

- MMU converts virtual-->physical
 - Can translate between architectures
- Physical data can be on Elan SDRAM or on local memory
- Location of physical data not normally visible to users

Virtual address translation

Virtual Memory Extension

Extension to virtual memory: virtual operation
- Cooperating processes can transfer data between address spaces
- Protection still maintained

Context

- Virtual process id replaced with context
 - Context + virtual address identify page
- Multiple processes (on multiple machines) can have same context
 - Allows for distributed shared memory

Fault tolerance

- Fault tolerance steps:
 - Packet consists of route info + transactions
 - Last transaction contains ACK Now flag
 - Packet not successful until receiver sends ACK
 - Link reused only after ACK received
- After fixed # of errors, new route negotiated
Programming Libraries

- Allows programmer to write intelligent protocols
- Elan3lib
 - Low-level, high efficiency
 - Allows user to program Elan, move data manually between Elan memory & local memory (w/o operating system knowing)
- Elanlib
 - Higher-level, lower efficiency
 - Allows MPI-like message passing

Experimental Methodology

Setup:
- 16 dual processor 733 MHz Pentium III’s
 - 1 GB RAM
 - 64 bit, 66 MHz PCI slot for Elan card
- Quaternary 2-dimensional fat tree network
- Linux 2.4.0-test7 operating system

Benchmarks:
- Elan3lib benchmark to show best performance
- Elanlib benchmark to simulate MPI-2

Ping test - Bandwidth

Bandwidth lies between 307 MB/s for MPI to 335 MB/s for Elan3lib

Ping test - Latency

Latency lies between 5.0 us for MPI to 2.4 us for Elan3lib up to 64 bytes

Scalability - Hot spot vulnerability

Virtually no bandwidth decrease when 8 processors access same address

Authors’ conclusions

- Analysis demonstrates that “the network and its libraries deliver excellent performance to users”
- Future work:
 - analyzing scalability with larger numbers of nodes
 - testing actual scientific applications
 - testing more elaborate communication patterns