SvPablo: A multi-language Architecture-Independent Performance Analysis System

Luiz A. De Rose and Daniel A. Reed

Presented by Jusub Kim
11/08/05 CMSC 714

Goal of their work.

- Development of a GUI tool kit which can…
 - Correlate sequential/parallel source code with dynamic performance data from both software and hardware measurements
 - Provide a portable, intuitive and easily used interface.
Their achievements.

- SvPablo(source view pablo):
 - Is a graphical environment for instrumenting application source code and browsing dynamic performance data.
 - Is portable, language independent, and performance metric independent (enabled by using the SDDF-self describing data format).
 - Supports for applications executing on both sequential and parallel systems and exploits hardware support of performance counters.

Details: How did they achieve that?

- Performance Instrumentation
- Hardware performance integration
- Performance Visualization
- Language and Architecture Transparency
Performance instrumentation

- Supports both interactive and automatic instrumentation.

Automatic instrumentation

- Support analysis of HPF code.
- Why not allow interactive instrumentation?
 - HPF compiler does high-level optimizations and allowing users to instrument data parallel source code can potentially inhibit any of these optimizations, reducing performance.
- Let HPF compiler emit instrumented code, which calls the svPablo library. It captures data for each executable line and every procedure call.

Performance instrumentation

- Interactive Instrumentation
 - Most compilers for sequential languages primarily focus on local optimizations.
 - Support interactive instrumentation of C and Fortran.
 - Restrict instrumentable constructs to outer loops and procedure calls.
Details: How did they achieve that?

- Performance Instrumentation
- **Hardware performance integration**
- Performance Visualization
- Language and Architecture Transparency

Hardware performance integration

- **Software instrumentation is simply not enough!** We need to consider also…
 - Superscalar instruction execution effect
 - Cache effect in hardware-managed distributed shared memory hierarchy
- **New microprocessors commonly provide a set of performance registers.** (cycles, cache misses, floating point instructions, branch misprediction, etc.)
Hardware performance integration

- During program execution, the SvPablo library queries the user-selected counters and records them.
- After program execution, the SvPablo records its statistical analyses in a set of summary files, one for each executing process and merges them computing new global statistics, which is input to the analysis graphical interface.

Details: How did they achieve that?

- Performance Instrumentation
- Hardware performance integration
- **Performance Visualization**
- Language and Architecture Transparency
Details: How did they achieve that?

- Performance Instrumentation
- Hardware performance integration
- Performance Visualization
- Language and Architecture Transparency
Language and Architecture Transparency

- Requires a **flexible specification mechanism** for instrumentation points and performance metrics.
- **SDDF** (self-describing data format) separates performance data presentation from language and architecture
 - A group of record descriptors and record instances.
 - Three groups of record descriptors: mapping, configuration, and statistics.
Language and Architecture

Transparency

- SDDF main features.
 - **Portability**: portable directly across systems, in binary or ASCII format
 - **Generality**: a variety of events or data types can be supported
 - **Extensibility**: tool developers can easily add new metrics

Language and Architecture

Transparency

- Event Statistics
 - Performance data is represented by a Event Mapping record and a set of Statistics records

- Procedure Statistics
 - Procedure statistics records define the performance metrics associated with all procedures: # of calls to the procedure and the exclusive duration of the procedure. etc.
Related Works

- Parady (U of Wisconsin)
 - a tool for measuring the performance of large scale parallel programs
 - Instrumentation and visualization are performed during run-time.
- Pablo (U of Illinois)
 - Consists of several components for instrumenting and tracing parallel programs and for analyzing the trace file.
- AIMS (NASA Ames Research)
 - A tool kit for parallel applications.
 - Support MPI and PVM.

SvPablo Summary.

- A graphical environment for instrumenting application source code and browsing dynamic performance data.
- Support for not only software performance measurement but also access to hardware performance counters.
- Language and architecture transparency by representing performance data via XML-like format.