Eraser

Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs
S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, T. Anderson

Serge Koren
CMSC714
Outline

➲ Introduction
➲ Related approaches
➲ Eraser's approach
➲ Implementation/Experience
➲ Conclusion
Introduction

- Threaded programming is everywhere
- Hard to debug, “Threads are a bad idea” (Osterhout 96)

Data Race

- Two concurrent threads access shared variable
 - At least one access is a write
 - No mechanism to prevent accesses from being concurrent
Related Approaches

- **Monitors** – state and procedures together
- **Happens-before**
 - Events ordered between threads based on synchronization objects they access
 - More general, more costly
 - Less thorough
Lockset Algorithm

- Support only lock-based synchronization
- Check all read/writes as program runs
 - Infer protection from execution history
- On each access to variable, v, by thread, t
 - Set \(C(v) = C(v) \cap \text{locks_held}(t) \)
 - If \(C(v) = {} \), issue warning
Example

- Program

\[
C(v) = \begin{cases} \emptyset & \{\mu_1, \mu_2\} \\
\{\mu_1\} & \{\mu_1\} \\
\emptyset & \{\mu_2\} \\
\emptyset, \text{ WARNING} & \emptyset
\end{cases}
\]

\text{lock}(\mu_1);
\text{unlock}(\mu_1);
\text{lock}(\mu_2);
\text{unlock}(\mu_2);
Improving Lockset

- **Initialization** – initialize a shared variable without holding lock
- **Read-shared data** – written only at initialization and then read (no need for locks)
- **Read-write locks** – read by multiple threads, written by only one at a time
Improved Lockset Example

Virgin

Exclusive

Shared

Shared-Modified

rd

wr

rd, new thread

wr

wr, new thread

rd/wr, first thread

wr
Read-Write Locks

- Lock \(m \) protects \(v \) if \(m \) held in write for writes and in read/write for read
- On each read of variable, \(v \), by thread, \(t \)
 - Set \(C(v) = C(v) \cap \text{locks_held}(t) \)
 - If \(C(v) = \{\} \), issue warning
- On each write of variable, \(v \), by thread, \(t \)
 - Set \(C(v) = C(v) \cap \text{write_locks_held}(t) \)
 - If \(C(v) = \{\} \), issue warning
Implementation

- Instrument program
- Indexed table of lock sets (hashed and sorted)
- Shadow word
 - Exists for every 32-bit data segment
 - State condition
 - Lockset index
- 10-30 times slower than without
Annotions

- Memory reuse – private allocators/free lists
 - EraserReuse
- Private locks – private implementations of locks
 - EraserRead/WriteLock/Unlock
- Benign races – race that does not affect correctness
 - EraserIgnoreOn/Off
Experience

- Tested on different code bases
 - Found true data races, found false alarms
- Effectiveness/Sensitivity
 - Found data races that had existed before
 - Works the same on two or ten threads
- Multiple locks
 - Many read locks, write takes all read locks
- Deadlock detection using ordering of locks
Conclusion

- Little data on sensitivity
- Only works for locks (pthreads)
- Annotations needed
- Slow/doubled memory usage
- Multiple lock fix incorrect/unclear

- http://valgrind.org (Helgrind: a data-race detector)