Synchronization and Communication in the T3E Multiprocessor

Steven L. Scott
Cray Research, Inc

Presented by
Hari Sivaramakrishnan

T3E Features

- Distributed shared memory system
 - Up to 2GB memory per processor
 - DEC Alpha 21164 processor
 - Shell – control and router chips, memory

![Figure 1. T3E PE block diagram](image-url)
T3E Features

- Buffering
 - Buffers can detect multiple interleaved streams

- Local memory cached
 - No onboard cache
 - External backmap to maintain data consistency

- E-Registers
 - 512 user + 128 system
 - Remote communication and synchronization
 - Highly pipelined
 - Extend the processor’s physical address space

Global Communication

- Operations performed on E-Registers
 - Direct loads, stores between E-registers and processor registers
 - Global operations (message passing, synchronization, remote loads)

- Global references
 - Global Virtual Address (GVA)
Address Translation

- Global Virtual Address (GVA)
- Virtual PE number
- Centrifuge
 - Mask, index, base

Source or destination

Should be only 6 bits, not 8
Get and Put operations

- Reads and writes to global E-Registers
 - Single word or a vector
- Flags on each register for synchronization
 - Empty
 - Full
 - Memory to memory copy through E-registers
 - Does not touch processor bus
 - No RAW hazards
- Highly pipelined
 - 256 bytes in 26.7ns can be issued
 - Large number of E-registers
 - Max transfer rate = 480MB/s between two nodes

Atomic Memory Operations

- T3D used dedicated SWAP registers
- T3E uses memory locations

<table>
<thead>
<tr>
<th>Atomic Operation (operands)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetch, &_Inc (none)</td>
<td>Add one to memory location and return original memory contents.</td>
</tr>
<tr>
<td>Fetch, &_Add (addend)</td>
<td>Add integer addend to memory location and return original memory contents.</td>
</tr>
<tr>
<td>Compare & Swap (comperand, swaperand)</td>
<td>If comperand equals contents of memory, then store swaperand into memory. Return original contents of memory.</td>
</tr>
<tr>
<td>Masked_Swap (mask, swaperand)</td>
<td>For each bit set in mask, store corresponding bit of swaperand into memory. Return original contents of memory.</td>
</tr>
</tbody>
</table>

Table 1. Atomic Memory Operations
How to perform an AMO?

- Operands written to E-registers
- Store to I/O space to trigger operation
- Atomic Memory Operation packet sent to particular memory location
- Result returned to E-Register specified on the address line
- Most AMOs need a read-modify-write of RAM
 - 11 sysclocks at 147ns per clock
 - 8M operations per second
- High bandwidth fetch_and_inc served out of buffer at memory controller for each node

Messages

- T3D
 - Single hardware message queue for user and system messages
 - Every message generates an interrupt
- T3E
 - Arbitrary number of message queues
 - Mapped to memory
 - Queue max size = 128 MB. Message size = 64 bytes
- Message notification
 - Always interrupt
 - Never interrupt (polling)
 - Interrupt on a threshold
- Message passing and shared memory integration
Message Queue Control Word

- Descriptor for a message queue
- Messages rejected when queue is full
- If message insertion creates a segmentation violation, **nack** is returned

![Figure 5. Message Queue Control Word](image)

Sending Messages

- Messages assembled in an aligned block of 8 E-Registers
- Sent to address of MQCW
- MQCW updates and message storage are atomic
- E-Registers status is set to empty on send
 - If message accepted, changed to full
 - If message rejected, changed to full-send-rejected
Barrier/Eureka Synchronization

- **Barrier**
 - Wait for **all** processors to signal an event

- **Eureka**
 - Wait for **some** processor to signal an event

- **Barrier/Eureka Synchronization units**
 - 32 BSUs
 - Memory-mapped
 - Set of processors given access to a BSU

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_EUR</td>
<td>A eureka event came</td>
</tr>
<tr>
<td>S_EUR_I</td>
<td>A eureka came, interrupt signalled</td>
</tr>
<tr>
<td>S_ARM</td>
<td>Barrier is armed</td>
</tr>
<tr>
<td>S_ARM_I</td>
<td>Barrier is armed, an interrupt will occur on completion</td>
</tr>
<tr>
<td>S_BAR</td>
<td>Barrier just completed</td>
</tr>
<tr>
<td>S_BAR_I</td>
<td>Barrier just completed, interrupt signalled</td>
</tr>
</tbody>
</table>

Table 2. Barrier/Eureka Synchronization Unit States

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP_EUR</td>
<td>Send eureka</td>
</tr>
<tr>
<td>OP_INT</td>
<td>Set to interrupt when a eureka event occurs</td>
</tr>
<tr>
<td>OP_BAR</td>
<td>Arm Barrier</td>
</tr>
<tr>
<td>OP_BAR_I</td>
<td>Arm Barrier, interrupt on completion</td>
</tr>
<tr>
<td>OP_EUR_B</td>
<td>Send eureka and arm barrier</td>
</tr>
</tbody>
</table>

Table 3. Barrier/Eureka Synchronization Unit Operations
Barrier/Eureka Trees

- Barrier/Eureka network embedded in torus interconnect
 - Keeps latency lower than a remote reference
- Network router has a register for each BSU
 - Node can be configured as internal in BSU tree
 - Information about which of six network directions is the parent
- Eurekas and Barrier notifications are sent to the parent nodes
- Completions are broadcast heirarchically

Performance – E-Registers

Bandwidth increases with the number of E-registers used. Ultimately, at 128 registers, the E-register control logic becomes a bottleneck.
Performance – Startup Latency

When transfer size is small, startup time becomes significant. This fades away as the number of bytes transmitted increases to a big enough number.

Performance - AMO

Fetch_add has bigger packet sizes, and fetch_inc has buffering at memories.
Performance - Messaging

Processors 1 through 15 exchange messages with processor 0.
Maximum exchange rate = 932M/s

Performance - Barriers

Average time to perform a global barrier over 50 consecutive barriers
Summary of the T3E

- E-Registers
 - Extend memory address space
 - Pipelining of memory references
 - Used in communication and synchronization

- Messaging implemented as shared memory at user level

- A range of atomic synchronization constructs

- Hardware barrier outperforms software barrier by a factor of 7
 - Free because packets over normal interconnect are used

- Remote memory access has a greater startup penalty in T3E than in the T3D

Questions?