Synchronization and Communication in the T3E Multiprocessor

Steven L. Scott
Cray Research, Inc

Presented by
Hari Sivaramakrishnan

T3E Features
- Distributed shared memory system
- Up to 2GB memory per processor
- DEC Alpha 21164 processor
- **Shell** – control and router chips, memory

![T3E PE block diagram](image)

Global Communication
- Operations performed on E-Registers
 - Direct loads, stores between E-registers and processor registers
 - Global operations (message passing, synchronization, remote loads)
- Global references
 - Global Virtual Address (GVA)

Address Translation
- Global Virtual Address (GVA)
- Virtual PE number
- Centrifuge
 - Mask, index, base

![Address translation diagram](image)

Buffers can detect multiple interleaved streams
Local memory cached
- No onboard cache
- External backmap to maintain data consistency

E-Registers
- 512 user + 128 system
- Remote communication and synchronization
- Highly pipelined
- Extend the processor’s physical address space

Global Virtual Address (GVA)
- Source or destination

Should be only 8 bits, not 8
Get and Put operations

- Reads and writes to global E-Registers
 - Single word or a vector
- Flags on each register for synchronization
 - Empty
 - Full
 - Memory to memory copy through E-registers
 - Does not touch processor bus
 - No RAW hazards
- Highly pipelined
 - 256 bytes in 26.7ns can be issued
 - Large number of E-registers
 - Max transfer rate = 460MB/s between two nodes

Atomic Memory Operations

- T3D used dedicated SWAP registers
- T3E uses memory locations

<table>
<thead>
<tr>
<th>Atomic Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetch_A, Reg</td>
<td>Add value to memory locations and returns original memory contents.</td>
</tr>
<tr>
<td>Fetch_A, Addr</td>
<td>Add address allowed in memory location and returns original memory contents.</td>
</tr>
<tr>
<td>Compare_A, Swap</td>
<td>If comparison equals contents of memory, then memory referenced is returned. Returns original contents of memory.</td>
</tr>
<tr>
<td>Modify_A, Swap</td>
<td>For each bit set as read, store corresponding bit of referenced into memory. Returns original contents of memory.</td>
</tr>
</tbody>
</table>

Table 1: Atomic Memory Operations

How to perform an AMO?

- Operands written to E-registers
- Store to I/O space to trigger operation
- Atomic Memory Operation packet sent to particular memory location
- Result returned to E-Register specified on the address line
- Most AMOs need a read-modify-write of RAM
 - 11 sysclocks at 147ns per clock
 - 8M operations per second
- High bandwidth fetch_and_inc served out of buffer at memory controller for each node

Messages

- T3D
 - Single hardware message queue for user and system messages
 - Every message generates an interrupt
- T3E
 - Arbitrary number of message queues
 - Mapped to memory
 - Queue max size = 128 MB, Message size = 64 bytes
- Message notification
 - Always interrupt
 - Never interrupt (polling)
 - Interrupt on a threshold
- Message passing and shared memory integration

Message Queue Control Word

- Descriptor for a message queue
- Messages rejected when queue is full
- If message insertion creates a segmentation violation, nack is returned

Sending Messages

- Messages assembled in an aligned block of 8 E-Registers
- Sent to address of MQCW
- MQCW updates and message storage are atomic
- E-Registers status is set to empty on send
 - If message accepted, changed to full
 - If message rejected, changed to full-send-rejected
Barrier/Eureka Synchronization
- **Barrier**
 - Wait for **all** processors to signal an event
- **Eureka**
 - Wait for **some** processor to signal an event
- **Barrier/Eureka Synchronization units**
 - 32 BSUs
 - Memory-mapped
 - Set of processors given access to a BSU

Barrier/Eureka Trees
- **Barrier/Eureka network embedded in torus interconnect**
 - Keeps latency lower than a remote reference
- Network router has a register for each BSU
 - Node can be configured as internal in BSU tree
 - Information about which of six network directions is the parent
- Eurekas and Barrier notifications are sent to the parent nodes
- Completions are broadcast hierarchically

Performance – E-Registers
- Bandwidth increases with the number of E-registers used. Ultimately, at 128 registers, the E-register control logic becomes a bottleneck.

Performance – Startup Latency
- When transfer size is small, startup time becomes significant. This fades away as the number of bytes transmitted increases to a big enough number.

Performance - AMO
- Fetch_add has bigger packet sizes, and fetch_inc has buffering at memories
Performance - Messaging

Processors 1 through 15 exchange messages with processor 0.
Maximum exchange rate = 932M/s

Figure 11. Messaging performance

Performance - Barriers

Average time to perform a global barrier over 50 consecutive barriers

Figure 12. Barrier performance

Summary of the T3E

- E-Registers
 - Extend memory address space
 - Pipelining of memory references
 - Used in communication and synchronization
- Messaging implemented as shared memory at user level
- A range of atomic synchronization constructs
- Hardware barrier outperforms software barrier by a factor of 7
 - Free because packets over normal interconnect are used
- Remote memory access has a greater startup penalty in T3E than in the T3D

Questions?