CMSC 132: Object-Oriented Programming II

Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park
Algorithm Efficiency

Efficiency
- Amount of resources used by algorithm
 - Time, space

Measuring efficiency
- Benchmarking
- Asymptotic analysis
Benchmarking

Approach
- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time & space needed

Industry benchmarks
- SPEC – CPU performance
- MySQL – Database applications
- WinStone – Windows PC applications
- MediaBench – Multimedia applications
- Linpack – Numerical scientific applications
Benchmarking

Advantages
- Precise information for given configuration
 - Implementation, hardware, inputs

Disadvantages
- Affected by configuration
 - Data sets (usually too small)
 - Hardware
 - Software
- Affected by special cases (biased inputs)
- Does not measure intrinsic efficiency
Asymptotic Analysis

Approach

- Mathematically analyze efficiency
- Calculate time as function of input size n
 - $T \approx O[f(n)]$
 - T is on the order of $f(n)$
 - “Big O” notation

Advantages

- Measures intrinsic efficiency
- Dominates efficiency for large input sizes
Search Example

Number guessing game

- Pick a number between 1…n
- Guess a number
- Answer “correct”, “too high”, “too low”
- Repeat guesses until correct number guessed
Linear Search Algorithm

Algorithm
1. Guess number = 1
2. If incorrect, increment guess by 1
3. Repeat until correct

Example
- Given number between 1…100
- Pick 20
- Guess sequence = 1, 2, 3, 4 … 20
- Required 20 guesses
Linear Search Algorithm

Analysis of # of guesses needed for 1…n
- If number = 1, requires 1 guess
- If number = n, requires n guesses
- On average, needs n/2 guesses
- Time = O(n) = Linear time
Binary Search Algorithm

Algorithm

- Set Δ to $n/4$
- Guess number = $n/2$
- If too large, guess number $-$ Δ
- If too small, guess number $+$ Δ
- Reduce Δ by $\frac{1}{2}$
- Repeat until correct
Binary Search Algorithm

Example

- Given number between 1…100
- Pick 20

Guesses =

- 50, $\Delta = 25$, Answer = too large, subtract Δ
- 25, $\Delta = 12$, Answer = too large, subtract Δ
- 13, $\Delta = 6$, Answer = too small, add Δ
- 19, $\Delta = 3$, Answer = too small, add Δ
- 22, $\Delta = 1$, Answer = too large, subtract Δ
- 21, $\Delta = 1$, Answer = too large, subtract Δ
- 20

- Required 7 guesses
Binary Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = n/2, requires 1 guess
- If number = 1, requires \(\log_2(n) \) guesses
- If number = n, requires \(\log_2(n) \) guesses
- On average, needs \(\log_2(n) \) guesses
- Time = \(O(\log_2(n)) = \text{Log time} \)
Search Comparison

For number between 1…100
- Simple algorithm = 50 steps
- Binary search algorithm = \(\log_2(n) = 7 \) steps

For number between 1…100,000
- Simple algorithm = 50,000 steps
- Binary search algorithm = \(\log_2(n) \) (about 17 steps)

Binary search is much more efficient!
Asymptotic Complexity

Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/2</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - \(n/2 \) and \(4n+3 \) behave similarly
 - Run time roughly doubles as input size doubles
 - Run time increases linearly with input size

- For large values of \(n \)
 - \(\text{Time}(2n) / \text{Time}(n) \) approaches exactly 2

- Both are \(O(n) \) programs
Asymptotic Complexity

Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
<th>(\log_2(n))</th>
<th>(5 \times \log_2(n) + 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>6</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>7</td>
<td>38</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>8</td>
<td>43</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
<td>9</td>
<td>48</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - $\log_2(n)$ and $5 \times \log_2(n) + 3$ behave similarly
 - Run time roughly increases by constant as input size doubles
 - Run time increases logarithmically with input size

- For large values of n
 - $\text{Time}(2n) - \text{Time}(n)$ approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor
 - $\log_a N = \frac{\log_b N}{\log_b a}$
 - Both are $O(\log(n))$ programs
Asymptotic Complexity

Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - n^2 and $2n^2 + 8$ behave similarly
 - Run time roughly increases by 4 as input size doubles
 - Run time increases quadratically with input size

- For large values of n
 - $\text{Time}(2n) / \text{Time}(n)$ approaches 4

- Both are $O(n^2)$ programs
Big-O Notation

Represents
- Upper bound on number of steps in algorithm
- For sufficiently large input size
- Intrinsic efficiency of algorithm for large inputs

[# steps vs input size graph]
Formal Definition of Big-O

Function \(f(n) \) is \(O(g(n)) \) if

- For some positive constants \(M, N_0 \)
- \(M \times g(n) \geq f(n) \), for all \(n \geq N_0 \)

Intuitively

- For some coefficient \(M \) & all data sizes \(\geq N_0 \)
 - \(M \times g(n) \) is always greater than \(f(n) \)
Big-O Examples

- $5n + 1000 \Rightarrow O(n)$
 - Select $M = 6$, $N_0 = 1000$
 - For $n \geq 1000$
 - $6n \geq 5n+1000$ is always true
 - Example \Rightarrow for $n = 1000$
 - $6000 \geq 5000 + 1000$
Big-O Examples

2n² + 10n + 1000 ⇒ O(n²)

Select M = 4, N₀ = 100

For n ≥ 100

4n² ≥ 2n² + 10n + 1000 is always true

Example ⇒ for n = 100

40000 ≥ 20000 + 1000 + 1000
Observations

- **Big O categories**
 - $O(\log(n))$
 - $O(n)$
 - $O(n^2)$

- **For large values of n**
 - Any $O(\log(n))$ algorithm is faster than $O(n)$
 - Any $O(n)$ algorithm is faster than $O(n^2)$

- Asymptotic complexity is fundamental measure of efficiency
Comparison of Complexity

A Comparison of Orders

\[f(x) \]

\[n \]

\[\frac{1}{2} n^2 \]

\[n^3 \]
Complexity Category Example

![Graph showing complexity categories: 2^n, n^2, nlog(n), n, log(n)]

- **2^n**: Rapidly increasing with problem size, making it impractical for large problems.
- **n^2**: Quadratic growth, manageable for moderate problem sizes.
- **nlog(n)**: Sub-linear growth, suitable for larger problems.
- **n**: Linear growth, scalable for smaller problems.
- **log(n)**: Logarithmic growth, highly scalable for very large problems.

The graph illustrates how different complexity categories scale with problem size.
Complexity Category Example
Calculating Asymptotic Complexity

As n increases

- Highest complexity term dominates
- Can ignore lower complexity terms

Examples

- $2n + 100 \Rightarrow O(n)$
- $n \log(n) + 10n \Rightarrow O(n\log(n))$
- $\frac{1}{2}n^2 + 100n \Rightarrow O(n^2)$
- $n^3 + 100n^2 \Rightarrow O(n^3)$
- $\frac{1}{100}2^n + 100n^4 \Rightarrow O(2^n)$
Complexity Examples

$2n + 100 \Rightarrow O(n)$

![Graph showing complexity examples](image-url)
Complexity Examples

\[
\frac{1}{2} n \log(n) + 10 n \Rightarrow O(n\log(n))
\]
Complexity Examples

\(\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2) \)
Complexity Examples

\[
\frac{1}{100} \cdot 2^n + 100 \cdot n^4 \Rightarrow O(2^n)
\]
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior

Types of analysis
- Best case
- Worst case
- Average case
Types of Case Analysis

- **Best case**
 - Smallest number of steps required
 - Not very useful
 - Example ⇒ Find item in first place checked
Types of Case Analysis

Worst case

- Largest number of steps required
- Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
- Example ⇒ Find item in last place checked
Quicksort Example

- Quicksort
 - One of the fastest comparison sorts
 - Frequently used in practice

- Quicksort algorithm
 - Pick pivot value from list
 - Partition list into values smaller & bigger than pivot
 - Recursively sort both lists
QuickSort Example

QuickSort properties
- Average case = $O(n \log(n))$
- Worst case = $O(n^2)$
 - Pivot \approx smallest / largest value in list
 - Picking from front of nearly sorted list

Can avoid worst-case behavior
- Select random pivot value
Types of Case Analysis

Average case

- Number of steps required for “typical” case
- Most useful metric in practice
- Different approaches
 - Average case
 - Expected case
 - Amortized
Approaches to Average Case

- **Average case**
 - Average over all possible inputs
 - Assumes some probability distribution, usually uniform

- **Expected case**
 - Algorithm uses randomness
 - Worse case over all possible input
 - Average over all possible random values

- **Amortized**
 - For all long sequences of operations
 - Worst case total time divided by # of operations
Amortization Example

Adding numbers to end of array of size k
- If array is full, allocate new array
 - Allocation cost is $O(\text{size of new array})$
 - Copy over contents of existing array

Two approaches
- Non-amortized
 - If array is full, allocate new array of size $k+1$
- Amortized
 - If array is full, allocate new array of size $2k$
 - Compare their allocation cost
Amortization Example

Non-amortized approach

Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Total cost \(\Rightarrow n(n+1)/2\)

Case analysis

- Best case \(\Rightarrow\) allocation cost = k
- Worse case \(\Rightarrow\) allocation cost = k
- Amortized case \(\Rightarrow\) allocation cost = \((n+1)/2\)
Amortization Example

Amortized approach

Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total cost \(\Rightarrow 2(n - 1)\)

Case analysis

Best case \(\Rightarrow\) allocation cost = 0
Worse case \(\Rightarrow\) allocation cost = 2(k – 1)
Amortized case \(\Rightarrow\) allocation cost = 2

An individual step might take longer, but faster for any sequence of operations