Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park

Algorithm Efficiency

- Efficiency
 - Amount of resources used by algorithm
 - Time, space
- Measuring efficiency
 - Benchmarking
 - Asymptotic analysis
Benchmarking

Approach
- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time & space needed

Industry benchmarks
- SPEC – CPU performance
- MySQL – Database applications
- WinStone – Windows PC applications
- MediaBench – Multimedia applications
- Linpack – Numerical scientific applications

Advantages
- Precise information for given configuration
 - Implementation, hardware, inputs

Disadvantages
- Affected by configuration
 - Data sets (usually too small)
 - Hardware
 - Software
- Affected by special cases (biased inputs)
- Does not measure *intrinsic* efficiency
Asymptotic Analysis

Approach
- Mathematically analyze efficiency
- Calculate time as function of input size \(n \)
 - \(T = O[f(n)] \)
 - \(T \) is on the order of \(f(n) \)
 - “Big O” notation

Advantages
- Measures intrinsic efficiency
- Dominates efficiency for large input sizes

Search Example

Number guessing game
- Pick a number between 1…\(n \)
- Guess a number
- Answer “correct”, “too high”, “too low”
- Repeat guesses until correct number guessed
Linear Search Algorithm

Algorithm
1. Guess number = 1
2. If incorrect, increment guess by 1
3. Repeat until correct

Example
- Given number between 1…100
- Pick 20
- Guess sequence = 1, 2, 3, 4 … 20
- Required 20 guesses

Linear Search Algorithm

Analysis of # of guesses needed for 1…n
- If number = 1, requires 1 guess
- If number = n, requires n guesses
- On average, needs n/2 guesses
- Time = O(n) = Linear time
Binary Search Algorithm

Algorithm
- Set Δ to $n/4$
- Guess number = $n/2$
- If too large, guess number – Δ
- If too small, guess number + Δ
- Reduce Δ by $\frac{1}{2}$
- Repeat until correct

Example
- Given number between 1…100
- Pick 20
- Guesses =
 - 50, Δ = 25, Answer = too large, subtract Δ
 - 25, Δ = 12, Answer = too large, subtract Δ
 - 13, Δ = 6, Answer = too small, add Δ
 - 19, Δ = 3, Answer = too small, add Δ
 - 22, Δ = 1, Answer = too large, subtract Δ
 - 21, Δ = 1, Answer = too large, subtract Δ
 - 20
- Required 7 guesses
Binary Search Algorithm

- Analysis of # of guesses needed for 1…n
 - If number = n/2, requires 1 guess
 - If number = 1, requires \(\log_2(n) \) guesses
 - If number = n, requires \(\log_2(n) \) guesses
 - On average, needs \(\log_2(n) \) guesses
 - Time = \(O(\log_2(n)) = \text{Log time} \)

Search Comparison

- For number between 1…100
 - Simple algorithm = 50 steps
 - Binary search algorithm = \(\log_2(n) \) = 7 steps

- For number between 1…100,000
 - Simple algorithm = 50,000 steps
 - Binary search algorithm = \(\log_2(n) \) (about 17 steps)

- Binary search is much more efficient!
Asymptotic Complexity

Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/2</td>
<td>4n+3</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>

Asymptotic Complexity

Comparing two functions

- n/2 and 4n+3 behave similarly
- Run time roughly doubles as input size doubles
- Run time increases linearly with input size

For large values of n

- Time(2n) / Time(n) approaches exactly 2

Both are O(n) programs
Asymptotic Complexity

Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log₂(n)</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
</tr>
</tbody>
</table>

Asymptotic Complexity

Comparing two functions
- log₂(n) and 5 * log₂(n) + 3 behave similarly
- Run time roughly increases by constant as input size doubles
- Run time increases logarithmically with input size

For large values of n
- Time(2n) – Time(n) approaches constant
- Base of logarithm does not matter
 - Simply a multiplicative factor
 \[\log_a N = \frac{\log_b N}{\log_b a} \]
- Both are O(\ log(n)\) programs
Asymptotic Complexity

Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>n²</td>
<td>2 n² + 8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>

- n² and 2 n² + 8 behave similarly
- Run time roughly increases by 4 as input size doubles
- Run time increases quadratically with input size

For large values of n
- Time(2n) / Time(n) approaches 4

Both are O(n²) programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs

Formal Definition of Big-O

- Function \(f(n) \) is \(\mathcal{O}(g(n)) \) if
 - For some positive constants \(M, N_0 \)
 - \(M \times g(n) \geq f(n) \), for all \(n \geq N_0 \)

- Intuitively
 - For some coefficient \(M \) & all data sizes \(\geq N_0 \)
 - \(M \times g(n) \) is always greater than \(f(n) \)
Big-O Examples

5n + 1000 \Rightarrow O(n)
- Select M = 6, N_0 = 1000
- For n \geq 1000
 - 6n \geq 5n + 1000 is always true
- Example \Rightarrow for n = 1000
 - 6000 \geq 5000 + 1000

Big-O Examples

2n^2 + 10n + 1000 \Rightarrow O(n^2)
- Select M = 4, N_0 = 100
- For n \geq 100
 - 4n^2 \geq 2n^2 + 10n + 1000 is always true
- Example \Rightarrow for n = 100
 - 40000 \geq 20000 + 1000 + 1000
Observations

- Big O categories
 - $O(\log(n))$
 - $O(n)$
 - $O(n^2)$
- For large values of n
 - Any $O(\log(n))$ algorithm is faster than $O(n)$
 - Any $O(n)$ algorithm is faster than $O(n^2)$
- Asymptotic complexity is fundamental measure of efficiency

Comparison of Complexity

![A Comparison of Orders](image_url)
Complexity Category Example

![Complexity Category Example Graph](image)

Complexity Category Example

![Complexity Category Example Graph](image)
Calculating Asymptotic Complexity

- As n increases
 - Highest complexity term dominates
 - Can ignore lower complexity terms

Examples
- \(2n + 100 \Rightarrow O(n)\)
- \(n \log(n) + 10n \Rightarrow O(n \log(n))\)
- \(\frac{1}{2}n^2 + 100n \Rightarrow O(n^2)\)
- \(n^3 + 100n^2 \Rightarrow O(n^3)\)
- \(\frac{1}{100}2^n + 100n^4 \Rightarrow O(2^n)\)

Complexity Examples

- \(2n + 100 \Rightarrow O(n)\)

![Graph comparing n, nlog(n), and 2n + 100]
Complexity Examples

$\frac{1}{2} n \log(n) + 10 n \Rightarrow O(n \log(n))$

![Graph showing n, $n \log(n)$, and $\frac{1}{2} n \log(n) + 10 n$]

Complexity Examples

$\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2)$

![Graph showing $n \log(n)$, n^2, and $\frac{1}{2} n^2 + 100 n$]
Complexity Examples

\[\frac{1}{100} 2^n + 100 n^4 \Rightarrow O(2^n) \]

Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior

Types of analysis

- Best case
- Worst case
- Average case
Types of Case Analysis

- Best case
 - Smallest number of steps required
 - Not very useful
 - Example ⇒ Find item in first place checked

Types of Case Analysis

- Worst case
 - Largest number of steps required
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example ⇒ Find item in last place checked
Quicksort Example

- **Quicksort**
 - One of the fastest comparison sorts
 - Frequently used in practice

- **Quicksort algorithm**
 - Pick pivot value from list
 - Partition list into values smaller & bigger than pivot
 - Recursively sort both lists

Quicksort Example

- **Quicksort properties**
 - Average case = $O(n \log(n))$
 - Worst case = $O(n^2)$
 - Pivot ≈ smallest / largest value in list
 - Picking from front of nearly sorted list

- **Can avoid worst-case behavior**
 - Select random pivot value
Types of Case Analysis

- **Average case**
 - Number of steps required for “typical” case
 - Most useful metric in practice
 - Different approaches
 - Average case
 - Expected case
 - Amortized

Approaches to Average Case

- **Average case**
 - Average over all possible inputs
 - Assumes some probability distribution, usually uniform

- **Expected case**
 - Algorithm uses randomness
 - Worse case over all possible input
 - Average over all possible random values

- **Amortized**
 - For all long sequences of operations
 - Worst case total time divided by # of operations
Amortization Example

- Adding numbers to end of array of size k
 - If array is full, allocate new array
 - Allocation cost is $O(size$ of new array)
 - Copy over contents of existing array
- Two approaches
 - Non-amortized
 - If array is full, allocate new array of size $k+1$
 - Amortized
 - If array is full, allocate new array of size $2k$
 - Compare their allocation cost

Amortization Example

- Non-amortized approach
 - Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

 - Total cost $\Rightarrow n(n+1)/2$
- Case analysis
 - Best case \Rightarrow allocation cost $= k$
 - Worse case \Rightarrow allocation cost $= k$
 - Amortized case \Rightarrow allocation cost $= (n+1)/2$
Amortization Example

- **Amortized approach**
 - Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Total cost \(\Rightarrow 2(n - 1) \)

- **Case analysis**
 - Best case \(\Rightarrow \) allocation cost = 0
 - Worse case \(\Rightarrow \) allocation cost = \(2(k - 1)\)
 - Amortized case \(\Rightarrow \) allocation cost = 2

- An individual step might take longer, but faster for any sequence of operations