Overview

- Critical sections
- Comparing complexity
- Types of complexity analysis
Analyzing Algorithms

- **Goal**
 - Find asymptotic complexity of algorithm

- **Approach**
 - Ignore less frequently executed parts of algorithm
 - Find critical section of algorithm
 - Determine how many times critical section is executed as function of problem size

Critical Section of Algorithm

- **Heart of algorithm**
- **Dominates overall execution time**

- **Characteristics**
 - Operation central to functioning of program
 - Contained inside deeply nested loops
 - Executed as often as any other part of algorithm

- **Sources**
 - Loops
 - Recursion
Critical Section Example 1

Code (for input size n)
1. A
2. for (int i = 0; i < n; i++)
3. B
4. C

Code execution
- A \Rightarrow
- B \Rightarrow
- C \Rightarrow
- Time \Rightarrow

Time $\Rightarrow 1 + n + 1 = O(n)$
Critical Section Example 2

- Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++)
 3. B
 4. for (int j = 0; j < n; j++)
 5. C
 6. D

- Code execution
 - A ⇒
 - B ⇒
 - C ⇒
 - D ⇒

- Time ⇒

Critical Section Example 2

- Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++)
 3. B
 4. for (int j = 0; j < n; j++)
 5. C
 6. D

- Code execution
 - A ⇒ once
 - B ⇒ n times
 - C ⇒ n² times
 - D ⇒ once

- Time ⇒ 1 + n + n² + 1 = O(n²)
Critical Section Example 3

- Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++)
 3. for (int j = i+1; j < n; j++)
 4. B

- Code execution
 - A ⇒
 - B ⇒
 - Time ⇒

- Time ⇒ $1 + \frac{1}{2} n^2 = O(n^2)$
Critical Section Example 4

- Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++)
 3. for (int j = 0; j < 10000; j++)
 4. B

- Code execution
 - A ⇒
 - B ⇒
 - Time ⇒

- Time ⇒ $1 + 10000 \cdot n = O(n)$
Critical Section Example 5

Code (for input size n)
1. for (int $i = 0; i < n; i++$)
2. for (int $j = 0; j < n; j++$)
3. A
4. for (int $i = 0; i < n; i++$)
5. for (int $j = 0; j < n; j++$)
6. B

Code execution
- $A \Rightarrow$
- $B \Rightarrow$

Time \Rightarrow

$A \Rightarrow n^2$ times
$B \Rightarrow n^2$ times

Time $\Rightarrow n^2 + n^2 = O(n^2)$
Critical Section Example 6

- Code (for input size n)
 1. i = 1
 2. while (i < n)
 3. A
 4. i = 2 \times i
 5. B

- Code execution
 - A ⇒ log(n) times
 - B ⇒ 1 times

- Time ⇒ log(n) + 1 = O(log(n))
Critical Section Example 7

Code (for input size n)
1. DoWork (int n)
2. if (n == 1)
3. A
4. else
5. DoWork(n/2)
6. DoWork(n/2)

Code execution
- A ⇒
- DoWork(n/2) ⇒

Time(1) ⇒ Time(n) =

Critical Section Example 7

Code (for input size n)
1. DoWork (int n)
2. if (n == 1)
3. A
4. else
5. DoWork(n/2)
6. DoWork(n/2)

Code execution
- A ⇒ 1 times
- DoWork(n/2) ⇒ 2 times

Time(1) ⇒ 1 Time(n) = 2 × Time(n/2) + 1
Recursive Algorithms

Definition
- An algorithm that calls itself

Components of a recursive algorithm
1. Base cases
 - Computation with no recursion
2. Recursive cases
 - Recursive calls
 - Combining recursive results

Recursive Algorithm Example

Code (for input size n)
1. DoWork (int n)
2. if (n == 1)
3. A
4. else
5. DoWork(n/2)
6. DoWork(n/2)
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>O(log(n))</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>O(n)</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>O(n log(n))</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>O(n²)</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>O(n³)</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>O(nᵏ)</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>O(kⁿ)</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
</tbody>
</table>

From smallest to largest
For size n, constant k > 1

Comparing Complexity

- Compare two algorithms
 - f(n), g(n)
- Determine which increases at faster rate
 - As problem size n increases
- Can compare ratio
 - If ∞, f() is larger
 - If 0, g() is larger
 - If constant, then same complexity
Complexity Comparison Examples

- \(\log(n) \) vs. \(n^{1/2} \)

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \lim_{n \to \infty} \frac{\log(n)}{n^{1/2}} = 0
\]

- \(1.001^n \) vs. \(n^{1000} \)

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \lim_{n \to \infty} \frac{1.001^n}{n^{1000}} = ??
\]

Not clear, use L’Hopital’s Rule

Additional Complexity Measures

- Upper bound
 - Big-O \(\Rightarrow O(...) \)
 - Represents upper bound on # steps

- Lower bound
 - Big-Omega \(\Rightarrow \Omega(...) \)
 - Represents lower bound on # steps

- Combined bound
 - Big-Theta \(\Rightarrow \Theta(...) \)
 - Represents combined upper/lower bound on # steps
 - Best possible asymptotic solution
2D Matrix Multiplication Example

- Problem: \(C = A \times B \)

- Lower bound: \(\Omega(n^2) \) Required to examine 2D matrix

- Upper bounds:
 - \(O(n^3) \) Basic algorithm
 - \(O(n^{2.807}) \) Strassen’s algorithm (1969)
 - \(O(n^{2.376}) \) Coppersmith & Winograd (1987)

- Improvements still possible (open problem)
 - Since upper & lower bounds do not match

Additional Complexity Categories

- Name | Description
- NP | Nondeterministic polynomial time (NP)
- PSPACE | Polynomial space
- EXPSPACE | Exponential space
- Decidable | Can be solved by finite algorithm
- Undecidable | Not solvable by finite algorithm

Mostly of academic interest only

- Quadratic algorithms usually too slow for large data
- Use fast heuristics to provide non-optimal solutions
NP Time Algorithm

- Polynomial solution possible
 - If make correct guesses on how to proceed

- Required for many fundamental problems
 - Boolean satisfiability
 - Traveling salesman problem (TLP)
 - Bin packing

- Key to solving many optimization problems
 - Most efficient trip routes
 - Most efficient schedule for employees
 - Most efficient usage of resources

NP Time Algorithm

- Properties of NP
 - Can be solved with exponential time
 - Not proven to require exponential time
 - Currently solve using heuristics

- NP-complete problems
 - Representative of all NP problems
 - Solution can be used to solve any NP problem
 - Examples
 - Boolean satisfiability
 - Traveling salesman
$P = NP$?

- Are NP problems solvable in polynomial time?
 - Prove $P=NP$
 - Show polynomial time solution exists for any NP-complete problem
 - Prove $P \neq NP$
 - Show no polynomial-time solution possible
 - The expected answer
- Important open problem in computer science
 - 1 million prize offered by Clay Math Institute

Algorithmic Complexity Summary

- Asymptotic complexity
 - Fundamental measure of efficiency
 - Independent of implementation & computer platform
- Learned how to
 - Examine program
 - Find critical sections
 - Calculate complexity of algorithm
 - Compare complexity