Trees & Binary Search Trees

Department of Computer Science
University of Maryland, College Park

Trees

- Trees are hierarchical data structures
 - One-to-many relationship between elements
- Tree node / element
 - Contains data
 - Referred to by only 1 (parent) node
 - Contains links to any number of (children) nodes
Trees

Terminology

- **Root** ⇒ node with no parent
- **Leaf** ⇒ all nodes with no children
- **Interior** ⇒ all nodes with children

Root node

Interior nodes

Leaf nodes

Trees

Terminology

- **Sibling** ⇒ node with same parent
- **Descendent** ⇒ children nodes & their descendents
- **Subtree** ⇒ portion of tree that is a tree by itself
 ⇒ a node and its descendents

Siblings

Subtree
Trees

Terminology
- Level \Rightarrow is a measure of a node’s distance from root
- Definition of level
 - If node is the root of the tree, its level is 1
 - Else, the node’s level is 1 + its parent’s level
- Height (depth) \Rightarrow max level of any node in tree

Binary Trees

Binary tree
- Tree with 0–2 children per node
 - Left & right child / subtree
Tree Traversal

- Often we want to
 1. Find all nodes in tree
 2. Determine their relationship

- Can do this by
 1. Walking through the tree in a prescribed order
 2. Visiting the nodes as they are encountered

- Process is called tree traversal

Tree Traversal

- Goal
 - Visit every node in binary tree

- Approaches
 - Depth first
 - Preorder ⇒ parent before children
 - Inorder ⇒ left child, parent, right child
 - Postorder ⇒ children before parent
 - Breadth first ⇒ closer nodes first
Tree Traversal Methods

- **Pre-order**
 1. Visit node // first
 2. Recursively visit left subtree
 3. Recursively visit right subtree

- **In-order**
 1. Recursively visit left subtree
 2. Visit node // second
 3. Recursively right subtree

- **Post-order**
 1. Recursively visit left subtree
 2. Recursively visit right subtree
 3. Visit node // last

Tree Traversal Methods

- **Breadth-first**

 BFS(Node n) {
 Queue Q = new Queue();
 Q.enqueue(n); // insert node into Q
 while (!Q.empty()) {
 n = Q.dequeue(); // remove next node
 if (!n.isEmpty()) {
 visit(n); // visit node
 Q.enqueue(n.Left()); // insert left subtree in Q
 Q.enqueue(n.Right()); // insert right subtree in Q
 }
 }
 }
Tree Traversal Examples

- **Pre-order (prefix)**
 - $+ \times 2 \ 3 \ / 8 \ 4$

- **In-order (infix)**
 - $2 \times 3 + 8 / 4$

- **Post-order (postfix)**
 - $2 \ 3 \times 8 \ 4 / +$

- **Breadth-first**
 - $+ \times / 2 \ 3 \ 8 \ 4$

Tree Traversal Examples

- **Pre-order**
 - $44, 17, 32, 78, 50, 48, 62, 88$

- **In-order**
 - $17, 32, 44, 48, 50, 62, 78, 88$

- **Post-order**
 - $32, 17, 48, 62, 50, 88, 78, 44$

- **Breadth-first**
 - $44, 17, 78, 32, 50, 88, 48, 62$

Expression tree

Binary search tree
Types of Binary Trees

- **Degenerate**
 - Mostly 1 child / node
 - Height = $O(n)$
 - Similar to linear list

- **Balanced**
 - Mostly 2 child / node
 - Height = $O(\log(n))$
 - Useful for searches

![Degenerate binary tree](image)

![Balanced binary tree](image)

Binary Search Trees

- **Key property**
 - Value at node
 - Smaller values in left subtree
 - Larger values in right subtree

- **Example**
 - $X > Y$
 - $X < Z$
Binary Search Trees

Examples

Binary search trees

Non-binary search tree

Binary Tree Implementation

Class Node {
 Value data;
 Node left, right; // null if empty

 void insert (Value data1) { ... }
 void delete (Value data2) { ... }
 Node find (Value data3) { ... }

 ...
}

...
Iterative Search of Binary Tree

Node Find(Node n, Value key) {
 while (n != null) {
 if (n.data == key) // Found it
 return n;
 if (n.data > key) // In left subtree
 n = n.left;
 else // In right subtree
 n = n.right;
 }
 return null;
}
Find(root, keyValue);

Recursive Search of Binary Tree

Node Find(Node n, Value key) {
 if (n == null) // Not found
 return(n);
 else if (n.data == key) // Found it
 return(n);
 else if (n.data > key) // In left subtree
 return Find(n.left, key);
 else // In right subtree
 return Find(n.right, key);
}
Find(root, keyValue);
Example Binary Searches

Find (2)

10 > 2, left
5 > 2, left
2 = 2, found

Find (25)

10 < 25, right
30 > 25, left
25 = 25, found

10 < 25, right
30 > 25, left
25 = 25, found
Binary Search Properties

- Time of search
 - Proportional to height of tree
 - Balanced binary tree
 - $O(\log(n))$ time
 - Degenerate tree
 - $O(n)$ time
 - Like searching linked list / unsorted array

- Requires
 - Ability to compare key values

Binary Search Tree Construction

- How to build & maintain binary trees?
 - Insertion
 - Deletion

- Maintain key property (invariant)
 - Smaller values in left subtree
 - Larger values in right subtree
Binary Search Tree – Insertion

Algorithm
1. Perform search for value X
2. Search will end at node Y (if X not in tree)
3. If X < Y, insert new leaf X as new left subtree for Y
4. If X > Y, insert new leaf X as new right subtree for Y

Observations
- $O(\log(n))$ operation for balanced tree
- Insertions may unbalance tree

Example Insertion

Insert (20)

10 < 20, right
30 > 20, left
25 > 20, left
Insert 20 on left
Binary Search Tree – Deletion

Algorithm
1. Perform search for value X
2. If X is a leaf, delete X
3. Else // must delete internal node
 a) Replace with largest value Y on left subtree
 OR smallest value Z on right subtree
 b) Delete replacement value (Y or Z) from subtree

Observation
- O(log(n)) operation for balanced tree
- Deletions may unbalance tree

Example Deletion (Leaf)

Delete (25)

10
5 30
2 25 45

10 < 25, right
30 > 25, left
25 = 25, delete

5 30
2 45

10
5 30
2 45
Example Deletion (Internal Node)

Delete (10)

Replacing 10 with largest value in left subtree

Replacing 5 with largest value in left subtree

Deleting leaf

Replacing 10 with smallest value in right subtree

Deleting leaf

Resulting tree
Building Maps w/ Search Trees

- Search trees often used to implement maps
 - Each non-empty node contains
 - Key
 - Value
 - Left and right child

- Need to be able to compare keys
 - Generic type `<K extends Comparable<K>>`
 - Denotes any type K that can be compared to K’s

Polymorphic Binary Search Trees

- What do we mean by polymorphic?
- Implement two subtypes of Tree
 1. EmptyTree
 2. NonEmptyTree
- Use EmptyTree to represent the empty tree
 - Rather than null
- Invoke methods on tree nodes
 - Without checking for null
 - Get empty or nonempty functionality
 - Selected by type of tree node
Polymorphic Binary Tree Implement.

Interface Tree {
 Tree insert (Value data1) { ... }
}

Class EmptyTree implements Tree {
 Tree insert (Value data1) { ... }
}

Class NonEmptyTree implements Tree {
 Value data;
 Tree left, right; // Either Empty or NonEmpty
 Tree insert (Value data1) { ... }
}