Graphs & Graph Traversal

Department of Computer Science
University of Maryland, College Park
Graph Data Structures

- Many-to-many relationship between elements
 - Each element has multiple predecessors
 - Each element has multiple successors
Graph Definitions

Node
- Element of graph
- State
 - List of adjacent nodes

Edge
- Connection between two nodes
- State
 - Endpoints of edge
Graph Definitions

- Directed graph
 - Directed edges

- Undirected graph
 - Undirected edges
Graph Definitions

- Weighted graph
 - Weight (cost) associated with each edge
Graph Definitions

Path

- Sequence of nodes n_1, n_2, \ldots, n_k
- Edge exists between each pair of nodes n_i, n_{i+1}

Example

- A, B, C is a path
- A, E, D is not a path
Graph Definitions

Cycle
- Path that ends back at starting node
- Example
 - A, E, A
 - A, B, C, D, E, A

Simple path
- No cycles in path

Acyclic graph
- No cycles in graph
Graph Definitions

- **Reachable**
 - Path exists between nodes

- **Connected graph**
 - Every node is reachable from some node in graph

Unconnected graphs
Graph Operations

- Traversal (search)
 - Visit each node in graph exactly once
 - Usually perform computation at each node
 - Two approaches
 - Breadth first search (BFS)
 - Depth first search (DFS)
Breadth-first Search (BFS)

- **Approach**
 - Visit all neighbors of node first
 - View as series of expanding circles
 - Keep list of nodes to visit in queue

- **Example traversal**
 1. n
 2. a, c, b
 3. e, g, h, i, j
 4. d, f
Breadth-first Tree Traversal

Example traversals starting from 1

Left to right | Right to left | Random

1 2 3 4 5 6 7 | 1 3 2 6 5 4 7 | 1 2 3 5 6 4 7
Traversals Orders

- Order of successors
 - For tree
 - Can order children nodes from left to right
 - For graph
 - Left to right doesn’t make much sense
 - Each node just has a set of successors and predecessors; there is no order among edges

- For breadth first search
 - Visit all nodes at distance k from starting point
 - Before visiting any nodes at (minimum) distance k+1 from starting point
Depth-first Search (DFS)

Approach
- Visit all nodes on path first
- **Backtrack** when path ends
- Keep list of nodes to visit in a stack

Example traversal
1. N
2. A
3. B, C, D, ...
4. F…
Depth-first Tree Traversal

Example traversals from 1 (preorder)

- Left to right
- Right to left
- Random
Traversals Algorithms

Issue
- How to avoid revisiting nodes
- Infinite loop if cycles present

Approaches
- Record set of visited nodes
- Mark nodes as visited
Traversing a graph to avoid revisiting nodes:

1. **Record set of visited nodes**
 - Initialize \{ Visited \} to empty set.
 - Add to \{ Visited \} as nodes is visited.
 - Skip nodes already in \{ Visited \}.

2. **Graph traversal example**

 - **Initial state**: \(V = \emptyset\)
 - **After visiting node 1**: \(V = \{1\}\)
 - **After visiting node 2**: \(V = \{1, 2\}\)

Diagrams showing the traversal process:

- Initial state: \(V = \emptyset\)
- After visiting node 1: \(V = \{1\}\)
- After visiting node 2: \(V = \{1, 2\}\)
Traversing a graph without revisiting nodes involves the following steps:

- **Mark nodes as visited**
 - Initialize tag on all nodes (to False)
 - Set tag (to True) as node is visited
 - Skip nodes with tag = True

Diagram:

1. Initialize tags (all False)
2. Visit node 1, mark as True
3. Visit node 2, mark as True
4. Visit node 3, mark as True
5. Continue visiting nodes, skipping visited ones

Graph:

- Initial graph with all False tags
- Marking nodes visited with True tags
- Final graph with all True tags visited
Traversal Algorithm Using Sets

\{ \text{Visited} \} = \emptyset
\{ \text{Discovered} \} = \{ \text{1st node} \}

\text{while} (\{ \text{Discovered} \} \neq \emptyset)

\quad \text{take node X out of} \ \{ \text{Discovered} \}
\quad \text{if X not in} \ \{ \text{Visited} \}

\quad \text{add X to} \ \{ \text{Visited} \}

\quad \text{for each successor Y of X}

\quad \quad \text{if (Y is not in} \ \{ \text{Visited} \})

\quad \quad \quad \text{add Y to} \ \{ \text{Discovered} \}
Traversing Algorithm Using Tags

for all nodes X
 set X.tag = False

{ 1st node } = { Discovered }

while ({ Discovered } ≠ ∅)
 take node X out of { Discovered }
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 add Y to { Discovered }
BFS vs. DFS Traversal

- Order nodes taken out of \{ Discovered \} key
- Implement \{ Discovered \} as Queue
 - First in, first out
 - Traverse nodes breadth first
- Implement \{ Discovered \} as Stack
 - First in, last out
 - Traverse nodes depth first
BFS Traversal Algorithm

for all nodes X
 X.tag = False
put 1st node in Queue
while (Queue not empty)
 take node X out of Queue
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 put Y in Queue
DFS Traversal Algorithm

for all nodes X
 X.tag = False
put 1st node in Stack
while (Stack not empty)
 pop X off Stack
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 push Y onto Stack
Recursive Graph Traversal

- Can traverse graph using recursive algorithm
 - Recursively visit successors

- Approach
 - Visit (X)
 - for each successor Y of X
 - Visit (Y)

- Implicit call stack & backtracking
 - Results in depth-first traversal
Recursive DFS Algorithm

Traverse()
 for all nodes X
 set X.tag = False
 Visit (1st node)
 Visit (X)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 Visit (Y)