CMSC 132:
Object-Oriented Programming II

Minimal Spanning Tree Algorithms

Department of Computer Science
University of Maryland, College Park
Overview

- Spanning trees
- Minimum spanning tree (MST)
 - Prim’s algorithm
 - Kruskal’s algorithm
- Graph implementation
 - Adjacency list / matrix / set
Spanning Tree

- Set of edges connecting all nodes in graph
 - need N-1 edges for N nodes
 - no cycles, can be thought of as a tree
- Can build tree during traversal

(a) Graph G
(b) Spanning tree T of graph G
Spanning Tree Construction

Recursive algorithm

Known = { start }
explore (start);

void explore (Node X) {
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Known
 explore(Y)
}
Spanning Tree Construction

Iterative algorithm

Known = { start }
Discovered = { start }
while (Discovered ≠ ∅) {
 take node X out of Discovered
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Discovered
 Add Y to Known
}
Breadth & Depth First Spanning Trees

Breadth-first

Depth-first
Depth-First Spanning Tree Example
Breadth-First Spanning Tree Example
Spanning Tree Construction

- Many spanning trees possible
 - Different breadth-first traversals
 - Nodes same distance visited in different order
 - Different depth-first traversals
 - Neighbors of node visited in different order
 - Different traversals yield different spanning trees
Minimum Spanning Tree (MST)

Spanning tree with minimum total edge weight

(a) Graph G
(b) A spanning tree of cost $C = 43$
(c) A minimum spanning tree of cost $C = 28$
Minimum Spanning Tree (MST)

- Possible to have multiple MSTs
 - Different spanning trees with same weight

- Example applications
 - Minimize length of telephone lines for neighborhood
 - Minimize distance of airplane routes serving cities
Algorithms for Finding MST

Three well known algorithms

1. Borůvka’s algorithm [1926]
 - For constructing efficient electricity network
 - Rediscovered by Sollin in 1960s
2. Prim’s algorithm [1957]
 - First discovered by Vojtěch Jarník in 1930
 - Similar to Djikstra’s algorithm
3. Kruskal’s algorithm [1956]
 - By Prof. Clyde Kruskal’s uncle
Algorithms for Finding MST

1. Borůvka’s algorithm
 - Add vertices to MST in parallel

2. Prim’s algorithm
 - Add vertices to MST
 - One at a time
 - Closest vertex first

3. Kruskal’s algorithm
 - Add edges to MST
 - One at a time
 - Lightest edge first
Shortest Path – Dijkstra’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes
while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (C[K] + cost of (K,J) < C[J])
 C[J] = C[K] + cost of (K,J)
 P[J] = K

Optimal solution computed with greedy algorithm
MST – Prim’s Algorithm

S = ∅

P[] = none for all nodes

C[start] = 0, C[] = ∞ for all other nodes

while (not all nodes in S)

find node K not in S with smallest C[K]

add K to S

for each node J not in S adjacent to K

if (/* C[K] + */ cost of (K,J) < C[J])

C[J] = /* C[K] + */ cost of (K,J)

P[J] = K

Keeps track of vertex w/ minimal distance to current tree

Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm

sort edges by weight (from least to most)

tree = ∅

for each edge (X,Y) in order
 if it does not create a cycle
 add (X,Y) to tree
 stop when tree has N–1 edges

Keeps track of
 - lightest edge remaining
 - whether adding edge to MST creates cycle

Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm Example
MST – Kruskal’s Algorithm

When does adding (X, Y) to tree create cycle?

Two approaches to finding cycles
1. Traversal
2. Connected subgraph
MST – Kruskal’s Algorithm

Traversing approach
- Traverse tree starting at X
- If we can reach Y, adding (X,Y) would create cycle

Example
- Question
 - Add (X,Y) to MST?
- Answer
 - No, since can already reach Y from X by traversing MST
MST – Kruskal’s Algorithm

Connected subgraph approach
- Maintain set of nodes for each connected subgraph
- Initialize one connected subgraph for each node
- If X, Y in same set, adding (X,Y) would create cycle
- Otherwise
 1. Add edge (X,Y) to spanning tree
 2. Merge sets containing X, Y

To test set membership
- Use Union-Find algorithm
MST – Connected Subgraph Example

Original graph

1. MST
 - A
 - B

 Sets
 - \{A\}
 - \{B\}
 - \{C\}
 - \{D\}

 Edge being considered for addition
 - \(<A, B>\)
 Include, since it connects two nodes in distinct sets

2. MST
 - A
 - B
 - C

 Sets
 - \{A, B\}
 - \{C\}
 - \{D\}

 Edge being considered for addition
 - \(<A, C>\)
 Include, since it connects two nodes in distinct sets

Ordered set of edges

- \(<A, B>\) 5
- \(<A, C>\) 9
- \(<B, C>\) 13
- \(<C, D>\) 15
- \(<B, D>\) 17
MST – Connected Subgraph Example

Original graph

Ordered set of edges

- \(<A, B>\) 5
- \(<A, C>\) 9
- \(<B, C>\) 13
- \(<C, D>\) 15
- \(<B, D>\) 17

MST

Sets

Edge being considered for addition

3. \(\{A, B, C\} \{D\}\)

- \(<B, C>\) Reject, since it connects nodes in the same set and would create a cycle

4. \(\{A, B, C\} \{D\}\)

- \(<C, D>\) Include, since it connects two nodes in distinct sets

\(\{A, B, C, D\}\) Finished
Union-Find Algorithm

- Union-Find
 - Algorithm & data structure
 - Very efficient for testing membership in disjoint sets

Problem description

- Start with n nodes, each in different subgraph
- Support two operations
 - Find – are nodes x & y in same subgraph?
 - Union – merge subgraphs containing x & y
Union-Find Algorithm

Basic approach
- Each node has a parent pointer
- Find – follow parent pointer(s) to root of tree
- Union – point root of 1st tree to root of 2nd tree

Example
- Union(a, b) ; union(c, d); union(b, d)
Union-Find Algorithm

Path compression

- Speeds up future Find() operations
 1. Follow parent pointer(s) to root of tree
 2. Update all nodes along path to point to root

Example

- Find(d)

So how fast is Union-Find?
Ackermann’s Function

Function

```c
int A(x,y) {
    if (x == 0)
        return y+1;
    if (y == 0)
        return A(x – 1, 1);
    return A(x – 1, A(x, y – 1));
}
```

A() grows fast

- A(2,2) = 7
- A(3,3) = 61
- A(4,2) = \(2^{65536} – 3\)
- A(4,3) = \(2^{2^{65536}} – 3\)
- A(4,4) = \(2^{2^{2^{65536}}} – 3\)
Inverse Ackermann’s Function

Definition

α(n) is the inverse Ackermann’s function
α(n) = the smallest k such that A(k,k) ≥ n

Fun fact

α(number of atoms in universe) = 4

Union-find

A sequence of n operations requires O(n α(n)) time
Practically speaking, indistinguishable from O(n)
Graph Summary

- Graph data structure
 - Very useful in practice
 - Different representations

- Many graph algorithms
 - Traversal
 - Shortest path
 - Minimum spanning tree