Overview

- Spanning trees
- Minimum spanning tree (MST)
 - Prim’s algorithm
 - Kruskal's algorithm
- Graph implementation
 - Adjacency list / matrix / set
Spanning Tree

- Set of edges connecting all nodes in graph
 - need N-1 edges for N nodes
 - no cycles, can be thought of as a tree
- Can build tree during traversal

![Graph G and Spanning Tree T of graph G]

Spanning Tree Construction

- Recursive algorithm

```java
Known = { start }
expose ( start );

void expose (Node X) {
    for each successor Y of X
        if (Y is not in Known)
            Parent[Y] = X
            Add Y to Known
        expose(Y)
}
```
Spanning Tree Construction

Iterative algorithm

Known = { start }
Discovered = { start }
while (Discovered ≠ ∅) {
 take node X out of Discovered
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Discovered
 Add Y to Known
}

Breadth & Depth First Spanning Trees

Breadth-first

Depth-first
Depth-First Spanning Tree Example

Breadth-First Spanning Tree Example
Spanning Tree Construction

- Many spanning trees possible
 - Different breadth-first traversals
 - Nodes same distance visited in different order
 - Different depth-first traversals
 - Neighbors of node visited in different order
 - Different traversals yield different spanning trees

Minimum Spanning Tree (MST)

- Spanning tree with minimum total edge weight

(a) Graph G
(b) A spanning tree of cost $C = 43$
(c) A minimum spanning tree of cost $C = 28$
Minimum Spanning Tree (MST)

Possible to have multiple MSTs
- Different spanning trees with same weight

Example applications
- Minimize length of telephone lines for neighborhood
- Minimize distance of airplane routes serving cities

Algorithms for Finding MST

Three well known algorithms
1. Borůvka’s algorithm [1926]
 - For constructing efficient electricity network
 - Rediscovered by Sollin in 1960s
2. Prim’s algorithm [1957]
 - First discovered by Vojtěch Jarník in 1930
 - Similar to Dijkstra’s algorithm
3. Kruskal’s algorithm [1956]
 - By Prof. Clyde Kruskal’s uncle
Algorithms for Finding MST

1. Borůvka’s algorithm
 - Add vertices to MST in parallel

2. Prim’s algorithm
 - Add vertices to MST
 - One at a time
 - Closest vertex first

3. Kruskal’s algorithm
 - Add edges to MST
 - One at a time
 - Lightest edge first

Shortest Path – Dijkstra’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes
while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (C[K] + cost of (K,J) < C[J])
 C[J] = C[K] + cost of (K,J)
 P[J] = K

Optimal solution computed with greedy algorithm
MST – Prim’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes

while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (/* C[K] + */ cost of (K,J) < C[J])
 C[J] = /* C[K] + */ cost of (K,J)
 P[J] = K

Keeps track of vertex w/ minimal distance to current tree
Optimal solution computed with greedy algorithm

MST – Kruskal’s Algorithm

sort edges by weight (from least to most)
tree = ∅
for each edge (X,Y) in order
 if it does not create a cycle
 add (X,Y) to tree
 stop when tree has N–1 edges

Keeps track of
 ■ lightest edge remaining
 ■ whether adding edge to MST creates cycle
Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm Example

When does adding (X,Y) to tree create cycle?

Two approaches to finding cycles
1. Traversal
2. Connected subgraph
MST – Kruskal’s Algorithm

- **Traversal approach**
 - Traverse tree starting at \(X \)
 - If we can reach \(Y \), adding \((X,Y)\) would create cycle

- **Example**
 - **Question**
 - Add \((X,Y)\) to MST?
 - **Answer**
 - No, since can already reach \(Y \) from \(X \) by traversing MST

MST – Kruskal’s Algorithm

- **Connected subgraph approach**
 - Maintain set of nodes for each connected subgraph
 - Initialize one connected subgraph for each node
 - If \(X, Y \) in same set, adding \((X,Y)\) would create cycle
 - Otherwise
 1. Add edge \((X,Y)\) to spanning tree
 2. Merge sets containing \(X, Y \)

- **To test set membership**
 - Use Union-Find algorithm
MST – Connected Subgraph Example

Original graph

Ordered set of edges

\[
\begin{align*}
&\langle A, B \rangle \ 5 \\
&\langle A, C \rangle \ 9 \\
&\langle B, C \rangle \ 13 \\
&\langle C, D \rangle \ 15 \\
&\langle B, D \rangle \ 17
\end{align*}
\]

1. MST

\[
\begin{align*}
&\text{Sets} \\
&A \cup \{B\} \cup \{C\} \cup \{D\}
\end{align*}
\]

Edge being considered for addition

\[
\begin{align*}
&\langle A, B \rangle \\
&\text{Include, since it connects two nodes in distinct sets}
\end{align*}
\]

2. MST

\[
\begin{align*}
&\text{Sets} \\
&A \cup \{B\} \cup \{C\} \cup \{D\}
\end{align*}
\]

Edge being considered for addition

\[
\begin{align*}
&\langle A, C \rangle \\
&\text{Include, since it connects two nodes in distinct sets}
\end{align*}
\]

MST – Connected Subgraph Example

Original graph

Ordered set of edges

\[
\begin{align*}
&\langle A, B \rangle \ 5 \\
&\langle A, C \rangle \ 9 \\
&\langle B, C \rangle \ 13 \\
&\langle C, D \rangle \ 15 \\
&\langle B, D \rangle \ 17
\end{align*}
\]

3. MST

\[
\begin{align*}
&\text{Sets} \\
&A \cup \{B, C\} \cup \{D\}
\end{align*}
\]

Edge being considered for addition

\[
\begin{align*}
&\langle B, C \rangle \\
&\text{Reject, since it connects nodes in the same set and would create a cycle}
\end{align*}
\]

4. MST

\[
\begin{align*}
&\text{Sets} \\
&A \cup \{B, C\} \cup \{D\}
\end{align*}
\]

Edge being considered for addition

\[
\begin{align*}
&\langle C, D \rangle \\
&\text{Include, since it connects two nodes in distinct sets}
\end{align*}
\]

Final MST

\[
\begin{align*}
&\text{Sets} \\
&A \cup \{B, C, D\}
\end{align*}
\]

Finished
Union-Find Algorithm

- Union-Find
 - Algorithm & data structure
 - Very efficient for testing membership in disjoint sets

- Problem description
 - Start with n nodes, each in different subgraph
 - Support two operations
 - Find – are nodes x & y in same subgraph?
 - Union – merge subgraphs containing x & y

Union-Find Algorithm

- Basic approach
 - Each node has a parent pointer
 - Find – follow parent pointer(s) to root of tree
 - Union – point root of 1st tree to root of 2nd tree

- Example
 - Union(a, b) ; union(c, d); union(b, d)

\[a \quad b \quad c \quad d \quad a \quad c \quad d \quad a \quad c \quad b \quad d \quad a \quad b \quad c \quad d \]
Union-Find Algorithm

- **Path compression**
 - Speeds up future `Find()` operations
 1. Follow parent pointer(s) to root of tree
 2. Update all nodes along path to point to root

- **Example**
 - `Find(d)`

 ![Diagram](image)

 So how fast is Union-Find?

Ackermann’s Function

- **Function**

  ```c
  int A(x,y) {
    if (x == 0) return y+1;
    if (y == 0) return A(x – 1, 1);
    return A(x – 1, A(x, y – 1));
  }
  ```

- **A() grows fast**

 - $A(2,2) = 7$
 - $A(3,3) = 61$
 - $A(4,2) = 2^{65536} – 3$
 - $A(4,3) = 2^{2^{65536}} – 3$
 - $A(4,4) = 2^{2^{2^{65536}}} – 3$
Inverse Ackermann’s Function

Definition
- $\alpha(n)$ is the inverse Ackermann’s function
- $\alpha(n) = \text{the smallest } k \text{ such that } A(k,k) \geq n$

Fun fact
- $\alpha(\text{number of atoms in universe}) = 4$

Union-find
- A sequence of n operations requires $O(n \alpha(n))$ time
- Practically speaking, indistinguishable from $O(n)$

Graph Summary

Graph data structure
- Very useful in practice
- Different representations

Many graph algorithms
- Traversal
- Shortest path
- Minimum spanning tree