CMSC 132:
Object-Oriented Programming II

Advanced Tree Structures

Department of Computer Science
University of Maryland, College Park
Overview

- Binary trees
 - Balance
 - Rotation

- Multi-way trees
 - Search
 - Insert

- Indexed tries
Tree Balance

- **Degenerate**
 - Worst case
 - Search in $O(n)$ time

- **Balanced**
 - Average case
 - Search in $O(\log(n))$ time
Question
- Can we keep tree (mostly) balanced?

Self-balancing binary search trees
- AVL trees
- Red-black trees

Approach
- Select invariant (that keeps tree balanced)
- Fix tree after each insertion / deletion
 - Maintain invariant using rotations
- Provides operations with $O(\log(n))$ worst case
AVL Trees

Properties
- Binary search tree
- Heights of children for node differ by at most 1

Example

Heights of children shown in red
AVL Trees

History

- Discovered in 1962 by two Russian mathematicians, Adelson-Velskii & Landis

Algorithm

1. Find / insert / delete as a binary search tree
2. After each insertion / deletion
 a) If height of children differ by more than 1
 b) Rotate children until subtrees are balanced
 c) Repeat check for parent (until root reached)
Red-black Trees

Properties

- Binary search tree
- Every node is red or black
- The root is black
- Every leaf is black
- All children of red nodes are black
- For each leaf, same # of black nodes on path to root

Characteristics

- Properties ensures no leaf is twice as far from root as another leaf
Red-black Trees

Example
Red-black Trees

- **History**
 - Discovered in 1972 by Rudolf Bayer

- **Algorithm**
 - Insert / delete may require complicated bookkeeping & rotations

- **Java collections**
 - TreeMap, TreeSet use red-black trees
Tree Rotations

Changes shape of tree
- Move nodes
- Change edges

Types
- Single rotation
 - Left
 - Right
- Double rotation
 - Left-right
 - Right-left
Tree Rotation Example

Single right rotation
Tree Rotation Example

Single right rotation

Node 4 attached to new parent
Example – Single Rotations

single left rotation

single right rotation
Example – Double Rotations

right-left double rotation

left-right double rotation
Multi-way Search Trees

Properties

- Generalization of binary search tree
- Node contains 1…k keys (in sorted order)
- Node contains 2…k+1 children
- Keys in jth child < jth key < keys in (j+1)th child

Examples
Types of Multi-way Search Trees

- 2-3 tree
 - Internal nodes have 2 or 3 children

- Index search trie
 - Internal nodes have up to 26 children (for strings)

- B-tree
 - \(T = \) minimum degree
 - Non-root internal nodes have \(T-1 \) to \(2T-1 \) children
 - All leaves have same depth
Multi-way Search Trees

Search algorithm
1. Compare key x to 1…k keys in node
2. If $x =$ some key then return node
3. Else if ($x < \text{key } j$) search child j
4. Else if ($x > \text{all keys}$) search child $k+1$

Example
Search(17)
Multi-way Search Trees

Insert algorithm
1. Search key x to find node n
2. If (n not full) insert x in n
3. Else if (n is full)
 a) Split n into two nodes
 b) Move middle key from n to n’s parent
 c) Insert x in n
 d) Recursively split n’s parent(s) if necessary
Multi-way Search Trees

Insert Example (for 2-3 tree)

Insert(4)
Multi-way Search Trees

Insert Example (for 2-3 tree)

- Insert(1)

Split node

Split parent
B-Trees

Characteristics

- Height of tree is $O(\log_T(n))$
- Reduces number of nodes accessed
- Wasted space for non-full nodes

Popular for large databases

- 1 node = 1 disk block
- Reduces number of disk blocks read
Indexed Search Tree (Trie)

- Special case of tree

- Applicable when
 - Key C can be decomposed into a sequence of subkeys C_1, C_2, \ldots, C_n
 - Redundancy exists between subkeys

- Approach
 - Store subkey at each node
 - Path through trie yields full key

- Example
 - Huffman tree
Tries

- Useful for searching strings
 - String decomposes into sequence of letters
 - Example
 - “ART” ⇒ “A” “R” “T”
- Can be very fast
 - Less overhead than hashing
- May reduce memory
 - Exploiting redundancy
- May require more memory
 - Explicitly storing substrings
Types of Tries

- **Standard**
 - Single character per node

- **Compressed**
 - Eliminating chains of nodes

- **Compact**
 - Stores indices into original string(s)

- **Suffix**
 - Stores all suffixes of string
Standard Tries

Approach
- Each node (except root) is labeled with a character
- Children of node are ordered (alphabetically)
- Paths from root to leaves yield all input strings

Trie for Morse Code
Standard Trie Example

For strings

\{ a, an, and, any, at \}
Standard Trie Example

For strings

{ bear, bell, bid, bull, buy, sell, stock, stop }
Standard Tries

Node structure
- Value between 1…m
- Reference to m children
- Array or linked list

Example

```java
class Node {
    Letter value; // Letter V = { V₁, V₂, … Vₘ }
    Node child[ m ];
}
```
Standard Tries

Efficiency

- Uses $O(n)$ space
- Supports search / insert / delete in $O(d \times m)$ time

For:

- n: total size of strings indexed by trie
- d: length of the parameter string
- m: size of the alphabet
Word Matching Trie

- Insert words into trie
- Each leaf stores occurrences of word in the text
Compressed Trie

Observation
- Internal node v of T is redundant if v has one child and is not the root

Approach
- A chain of redundant nodes can be compressed
 - Replace chain with single node
 - Include concatenation of labels from chain

Result
- Internal nodes have at least 2 children
- Some nodes have multiple characters
Compressed Trie

Example
Compact Tries

Compact representation of a compressed trie

Approach

- For an array of strings $S = S[0], \ldots S[s-1]$
- Store ranges of indices at each node
 - Instead of substring
- Represent as a triplet of integers (i, j, k)
 - Such that $X = S[i][j..k]$
- Example: $S[0] = \text{“abcd”}$, $(0,1,2) = \text{“bc”}$

Properties

- Uses $O(s)$ space, where $s = \# \text{ of strings in the array}$
- Serves as an auxiliary index structure
Compact Representation

Example

- S[0] = see
- S[1] = bear
- S[2] = sell
- S[3] = stock
- S[4] = bull
- S[5] = buy
- S[7] = hear
- S[8] = bell
- S[9] = stop

```
0 1 2 3 4
S[0] = see
S[1] = bear
S[2] = sell
S[3] = stock
S[4] = bull
S[5] = buy
S[7] = hear
S[8] = bell
S[9] = stop
```
Suffix Trie

- Compressed trie of all suffixes of text
- Example: “IPDPS”
 - Suffixes
 - IPDPS
 - PDPS
 - DPS
 - PS
 - S
- Useful for finding pattern in any part of text
 - Occurrence \Rightarrow prefix of some suffix
 - Example: find PDP in IPDPS
Suffix Trie

Properties

- For
 - String X with length n
 - Alphabet of size m
 - Pattern P with length d
- Uses $O(n)$ space
- Can be constructed in $O(n)$ time
- Find pattern P in X in $O(d \times m)$ time
 - Proportional to length of pattern, not text
Suffix Trie Example

```
minimize
0 1 2 3 4 5 6 7
```

![Suffix Trie Diagram](image)
Tries and Web Search Engines

- Search engine index
 - Collection of all searchable words
 - Stored in compressed trie

- Each leaf of trie
 - Associated with a word
 - List of pages (URLs) containing that word
 - Called occurrence list

- Trie is kept in memory (fast)

- Occurrence lists kept in external memory
 - Ranked by relevance
Computational Biology

DNA
- Sequence of 4 different nucleotides (ATCG)
- Portions of DNA sequence produce proteins (genes)

Genome
- Master DNA sequence for organism
- For Human
 - 46 chromosomes
 - 3 billion nucleotides
DNA the molecule of life

Trillions of cells
Each cell:
- 46 human chromosomes
- 2 meters of DNA
- 3 billion DNA subunits (the bases: A, T, C, G)
- Approximately 30,000 genes code for proteins that perform most life functions
Tries and Computational Biology

- ESTs
 - Fragments of expressed DNA
 - Indicator for genes (& location)
 - 5.5 million sequences at NIH

- ESTmapper
 - Build suffix trie of genome
 - 8 hours, 60 Gbytes
 - Search for ESTs in suffix trie
 - 11 hours w/ 8 processor Sun

- Search genome w/ BLAST
 - 5+ years (predicted)