Overview

- Binary trees
 - Balance
 - Rotation
- Multi-way trees
 - Search
 - Insert
- Indexed tries
Tree Balance

- **Degenerate**
 - Worst case
 - Search in $O(n)$ time

- **Balanced**
 - Average case
 - Search in $O(\log(n))$ time

Question
- Can we keep tree (mostly) balanced?

Self-balancing binary search trees
- AVL trees
- Red-black trees

Approach
- Select invariant (that keeps tree balanced)
- Fix tree after each insertion / deletion
 - Maintain invariant using rotations
- Provides operations with $O(\log(n))$ worst case
AVL Trees

Properties
- Binary search tree
- Heights of children for node differ by at most 1

Example

```
        44
       /  
      17   78
     /     / 
    32   50   88
   /   48   / 
  1    62 1
```

Heights of children shown in red

AVL Trees

History
- Discovered in 1962 by two Russian mathematicians, Adelson-Velskii & Landis

Algorithm
1. Find / insert / delete as a binary search tree
2. After each insertion / deletion
 a) If height of children differ by more than 1
 b) Rotate children until subtrees are balanced
 c) Repeat check for parent (until root reached)
Red-black Trees

Properties
- Binary search tree
- Every node is red or black
- The root is black
- Every leaf is black
- All children of red nodes are black
- For each leaf, same # of black nodes on path to root

Characteristics
- Properties ensures no leaf is twice as far from root as another leaf

Example

```
13
 /   \
8    17
 /     /    \
1  11   15  25
 /     /     /     \
6  NIL  22  27
```

Red-black Trees
Red-black Trees

- History
 - Discovered in 1972 by Rudolf Bayer

- Algorithm
 - Insert / delete may require complicated bookkeeping & rotations

- Java collections
 - TreeMap, TreeSet use red-black trees

Tree Rotations

- Changes shape of tree
 - Move nodes
 - Change edges

- Types
 - Single rotation
 - Left
 - Right
 - Double rotation
 - Left-right
 - Right-left
Tree Rotation Example

- Single right rotation

Node 4 attached to new parent
Example – Single Rotations

Example – Double Rotations
Multi-way Search Trees

Properties
- Generalization of binary search tree
- Node contains 1…k keys (in sorted order)
- Node contains 2…k+1 children
- Keys in jth child < jth key < keys in (j+1)th child

Examples

```
5   12
  2   8   17

5   8   15   33
  1   3   7   9   19   21   44
```

Types of Multi-way Search Trees

- 2-3 tree
 - Internal nodes have 2 or 3 children

- Index search trie
 - Internal nodes have up to 26 children (for strings)

- B-tree
 - T = minimum degree
 - Non-root internal nodes have T-1 to 2T-1 children
 - All leaves have same depth
Multi-way Search Trees

- Search algorithm
 1. Compare key x to $1...k$ keys in node
 2. If $x = $ some key then return node
 3. Else if ($x < $ key j) search child j
 4. Else if ($x > $ all keys) search child $k+1$

- Example
 - Search(17)

```
5   12
  5  8 17
  1  2  8 17 27 36 44
```

Multi-way Search Trees

- Insert algorithm
 1. Search key x to find node n
 2. If (n not full) insert x in n
 3. Else if (n is full)
 a) Split n into two nodes
 b) Move middle key from n to n's parent
 c) Insert x in n
 d) Recursively split n's parent(s) if necessary
Multi-way Search Trees

- Insert Example (for 2-3 tree)
 - Insert(4)

```
5  12
|   |
2  8 17
```

```
5  12
2  4 8 17
```

Multi-way Search Trees

- Insert Example (for 2-3 tree)
 - Insert(1)

```
5  12
1 2 4 8 17
```

```
5
2
1
```

Split node

```
2  5  12
1  4  8  17
```

Split parent
B-Trees

- Characteristics
 - Height of tree is $O(\log_T(n))$
 - Reduces number of nodes accessed
 - Wasted space for non-full nodes

- Popular for large databases
 - 1 node = 1 disk block
 - Reduces number of disk blocks read

Indexed Search Tree (Trie)

- Special case of tree

- Applicable when
 - Key C can be decomposed into a sequence of subkeys C_1, C_2, \ldots, C_n
 - Redundancy exists between subkeys

- Approach
 - Store subkey at each node
 - Path through trie yields full key

- Example
 - Huffman tree
Tries

- Useful for searching strings
 - String decomposes into sequence of letters
 - Example
 - “ART” ⇒ “A” “R” “T”
- Can be very fast
 - Less overhead than hashing
- May reduce memory
 - Exploiting redundancy
- May require more memory
 - Explicitly storing substrings

Types of Tries

- Standard
 - Single character per node
- Compressed
 - Eliminating chains of nodes
- Compact
 - Stores indices into original string(s)
- Suffix
 - Stores all suffixes of string
Standard Tries

Approach
- Each node (except root) is labeled with a character
- Children of node are ordered (alphabetically)
- Paths from root to leaves yield all input strings

![Trie for Morse Code](image)

Standard Trie Example

For strings
- \{ a, an, and, any, at \}
Standard Trie Example

For strings

\{ bear, bell, bid, bull, buy, sell, stock, stop \}

![Trie Diagram]

Standard Tries

Node structure

- Value between 1…m
- Reference to m children
- Array or linked list

Example

Class Node {
 Letter value; // Letter V = \{ V_1, V_2, \ldots V_m \}
 Node child[m];
}

<table>
<thead>
<tr>
<th>Pointer fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information field</td>
</tr>
</tbody>
</table>
Standard Tries

Efficiency
- Uses O(n) space
- Supports search / insert / delete in O(d \times m) time

For
- n: total size of strings indexed by trie
- d: length of the parameter string
- m: size of the alphabet

Word Matching Trie

- Insert words into trie
- Each leaf stores occurrences of word in the text
Compressed Trie

- **Observation**
 - Internal node v of T is redundant if v has one child and is not the root

- **Approach**
 - A chain of redundant nodes can be compressed
 - Replace chain with single node
 - Include concatenation of labels from chain

- **Result**
 - Internal nodes have at least 2 children
 - Some nodes have multiple characters

Example

![Diagram of a compressed trie](image)
Compact Tries

- Compact representation of a compressed trie

Approach
- For an array of strings $S = S[0], \ldots, S[s-1]$
- Store ranges of indices at each node
 - Instead of substring
 - Represent as a triplet of integers (i, j, k)
 - Such that $X = S[i][j..k]$
- Example: $S[0] = \text{"abcd"}, (0,1,2) = \text{"bc"}$

Properties
- Uses $O(s)$ space, where $s =$ # of strings in the array
- Serves as an auxiliary index structure

Compact Representation

Example

<table>
<thead>
<tr>
<th>$S[0]$</th>
<th>0 1 2 3 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>see</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$S[1]$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bear</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$S[2]$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>sell</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$S[3]$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>stock</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$S[4]$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bull</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$S[5]$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>buy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$S[6]$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bid</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$S[7]$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hear</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$S[8]$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bell</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$S[9]$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>stop</td>
<td></td>
</tr>
</tbody>
</table>

Diagram showing the compact representation of the strings with indices and ranges.
Suffix Trie

- Compressed trie of all suffixes of text
- Example: “IPDPS”
 - Suffixes
 - IPDPS
 - PDPS
 - DPS
 - PS
 - S
- Useful for finding pattern in any part of text
 - Occurrence \Rightarrow prefix of some suffix
 - Example: find PDP in IPDPS

Suffix Trie

- Properties
 - For
 - String X with length n
 - Alphabet of size m
 - Pattern P with length d
 - Uses $O(n)$ space
 - Can be constructed in $O(n)$ time
 - Find pattern P in X in $O(d \times m)$ time
 - Proportional to length of pattern, not text
Suffix Trie Example

Tries and Web Search Engines

- Search engine index
 - Collection of all searchable words
 - Stored in compressed trie

- Each leaf of trie
 - Associated with a word
 - List of pages (URLs) containing that word
 - Called occurrence list

- Trie is kept in memory (fast)
- Occurrence lists kept in external memory
 - Ranked by relevance
Computational Biology

- **DNA**
 - Sequence of 4 different nucleotides (ATCG)
 - Portions of DNA sequence produce proteins (genes)

- **Genome**
 - Master DNA sequence for organism
 - For Human
 - 46 chromosomes
 - 3 billion nucleotides
Tries and Computational Biology

- **ESTs**
 - Fragments of expressed DNA
 - Indicator for genes (& location)
 - 5.5 million sequences at NIH

- **ESTmapper**
 - Build suffix trie of genome
 - 8 hours, 60 Gbytes
 - Search for ESTs in suffix trie
 - 11 hours w/ 8 processor Sun

- **Search genome w/ BLAST**
 - 5+ years (predicted)