Lambda Calculus and Types

Introduction

- We’ve seen that several language conveniences aren’t strictly necessary
 - Multi-argument functions: use currying or tuples
 - Loops: use recursion
 - Side-effects: we don’t need them either
- Goal: come up with a “core” language that’s as small as possible and still Turing complete
 - This will give a way of illustrating important language features and algorithms

Lambda Calculus

- A lambda calculus expression is defined as

 \[e ::= x \quad \text{variable} \]
 \[| \quad \lambda x.e \quad \text{function} \]
 \[| \quad e \ e \quad \text{function application} \]

- \(\lambda x.e \) is like \((\text{fun } x \rightarrow e)\) in OCaml
- That’s it! All there is is higher-order functions

Three Conveniences

- Syntactic sugar for local declarations
 - \(\text{let } x = e_1 \text{ in } e_2 \) is short for \((\lambda x.e_2) \ e_1\)

- The scope of \(\lambda \) extends as far to the right as possible
 - \(\lambda x. \lambda y.x \ y \) is \(\lambda x.(\lambda y.(x \ y))\)

- Function application is left-associative
 - \(x \ y \ z \) is \((x \ y) \ z \)
 - Same rule as OCaml
Operational Semantics

• All we’ve got are functions, so all we can do is call them
• To evaluate \((\lambda x.e_1) e_2\)
 – Evaluate \(e_1\) with \(x\) bound to \(e_2\)
• This application is called “beta-reduction”
 – \((\lambda x.e_1) e_2 \rightarrow e_1[x/e_2]\)
 • \(e_1[x/e_2]\) is \(e_1\) where occurrences of \(x\) are replaced by \(e_2\)
 • Slightly different than the environments we saw for Ocaml
 – Do substitutions to replace formals with actuals, instead of carrying around environment that maps formals to actuals
 – We allow reductions to occur anywhere in a term

Examples

• \(\lambda x.x\) \(z \rightarrow z\)
• \(\lambda x.y \rightarrow y\)
• \(\lambda x.x \ y \rightarrow zy\)
 – A function that applies its argument to \(y\)
• \((\lambda x.y) (\lambda z.z) \rightarrow (\lambda z.y) \rightarrow y\)
• \((\lambda x.\lambda y.x \ y) z \rightarrow \ lambda \ z \ y\)
 – A curried function of two arguments that applies its first argument to its second
• \((\lambda x.\lambda y.x \ y) (\lambda z.zz) x \rightarrow (\lambda z.zz)x \rightarrow x\)

Static Scoping and Alpha Conversion

• Lambda calculus uses static scoping
• Consider the following
 – \((\lambda x.\lambda y.x \ y) y \rightarrow ?\)
 • The rightmost “\(x\)” refers to the second binding
 – This is a function that takes its argument and applies it to the identity function
• This function is “the same” as \((\lambda x.(\lambda y.y))\)
 – Renaming bound variables consistently is allowed
 • This is called alpha-renaming or alpha conversion
 – Ex. \(\lambda x.x = \lambda y.y = \lambda z.z\) \(\lambda y.\lambda x.y = \lambda z.\lambda x.z\)

Static Scoping (cont’d)

• How about the following?
 – \((\lambda x.\lambda y.x \ y) y \rightarrow ?\)
 – When we replace \(y\) inside, we don’t want it to be “captured” by the inner binding of \(y\)
• This function is “the same” as \((\lambda x.\lambda z.x \ z)\)
Beta-Reduction, Again

- Whenever we do a step of beta reduction...
 - \((\lambda x.e_1) e_2 \rightarrow e_1[x/e_2]\)
 - ...alpha-convert variables as necessary

- Examples:
 - \((\lambda x. x) (\lambda x. x) z = (\lambda x. x (\lambda y. y)) z \rightarrow z (\lambda y. y)\)
 - \((\lambda x. \lambda y. x y) y = (\lambda x. \lambda z. x z) y \rightarrow \lambda z. y z\)

Encodings

- It turns out that this language is Turing complete

- That means we can encode any computation we want in it
 - ...if we’re sufficiently clever...

Booleans

The lambda calculus was created by logician Alonzo Church in the 1930’s to formulate a mathematical logical system

- \(true = \lambda x. \lambda y. x\)
- \(false = \lambda x. \lambda y. y\)

- if \(a\) then \(b\) else \(c\) is defined to be the \(\lambda\) expression: \(a \ b \ c\)

- Examples:
 - if true then \(b\) else \(c\) \(\rightarrow (\lambda x. \lambda y. x) b c \rightarrow (\lambda y. b) c \rightarrow b\)
 - if false then \(b\) else \(c\) \(\rightarrow (\lambda x. \lambda y. y) b c \rightarrow (\lambda y. y) c \rightarrow c\)

Booleans (continued)

Other Boolean operations:
- \(not = \lambda x. ((x false) true)\)
- \(not\ true \rightarrow \lambda x. ((x false) true) true \rightarrow ((true false) true) \rightarrow false\)
- \(and = \lambda x. \lambda y. ((xy) false)\)
- \(or = \lambda x. \lambda y. ((x true) y)\)

- Show \(not\), \(and\) and \(or\) have the desired properties, ...

- Given these operations, can build up a logical inference system
Pairs

\[(a,b) = \lambda x.\text{if } x \text{ then } a \text{ else } b\]

\[\text{fst} = \lambda f. f \text{ true}\]

\[\text{snd} = \lambda f. f \text{ false}\]

- Examples:
 - \[\text{fst} (a,b) = (\lambda f. f \text{ true}) (\lambda x.\text{if } x \text{ then } a \text{ else } b)\]
 - \[\text{snd} (a,b) = (\lambda f. f \text{ false}) (\lambda x.\text{if } x \text{ then } a \text{ else } b)\]

Natural Numbers (Church*)

Named after Alonzo Church, developer of lambda calculus

\[0 = \lambda f.\lambda y.y\]

\[1 = \lambda f.\lambda y.f y\]

\[2 = \lambda f.\lambda y.f (f y)\]

\[3 = \lambda f.\lambda y.f (f (f y))\]

\[\text{succ} = \lambda z.\lambda f.\lambda y.f (z f y)\]

\[\text{iszero} = \lambda g. g (\lambda y.\text{false}) \text{ true}\]

- Recall that this is equivalent to \[\lambda g.((g (\lambda y.\text{false})) \text{ true})\]

Arithmetic defined

- Addition, if M and N are integers (as \(\lambda\) expressions):
 \[M + N = \lambda x.\lambda y.(M x)((N x) y)\]

- Multiplication:
 \[M * N = \lambda x.(M (N x))\]

- Prove \(1+1 = 2\).
 \[1+1 = \lambda x.\lambda y.((1 x))(1 x) y\]

- With these definitions, can build a theory of integer arithmetic.
Looping

• Define \(D = \lambda x.x \ x \)
• Then
 – \(D \ D = (\lambda x.x \ x) \ (\lambda x.x \ x) = D \ D \)
• So \(D \ D \) is an infinite loop
 – In general, self application is how we get looping

The “Paradoxical” Combinator

\[Y = \lambda f.(\lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x)) \]

• Then
 \[Y \ F = (\lambda f.(\lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x))) \ F \]
 \[= (\lambda x.F \ (x \ x)) \ (\lambda x.F \ (x \ x)) \]
 \[= Y \ F \]
• Thus \(Y \ F = F \ (Y \ F) = F \ (F \ (Y \ F)) = ... \)

Example

\[\text{fact} = \lambda f. \lambda n.\text{if } n = 0 \text{ then } 1 \text{ else } n * (f \ (n-1)) \]
 – The second argument to fact is the integer
 – The first argument is the function to call in the body
 • We’ll use \(Y \) to make this recursively call fact

\[(Y \ fact) \ 1 = (\text{fact} \ (Y \ fact)) \ 1 \]
 \[= \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 * ((Y \ fact) \ 0) \]
 \[= 1 * ((Y \ fact) \ 0) \]
 \[= 1 * (\text{fact} \ (Y \ fact) \ 0) \]
 \[= 1 * (\text{if } 0 = 0 \text{ then } 1 \text{ else } 0 * ((Y \ fact) \ (-1)) \]
 \[= 1 * 1 \rightarrow 1 \]

Discussion

• Using encodings we can represent pretty much anything we have in a “real” language
 – But programs would be pretty slow if we really implemented things this way
 – In practice, we use richer languages that include built-in primitives

• Lambda calculus shows all the issues with scoping and higher-order functions

• It’s useful for understanding how languages work
The Need for Types

• Consider the untyped lambda calculus
 – false = \(\lambda x.\lambda y.y \)
 – 0 = \(\lambda x.\lambda y.y \)
• Since everything is encoded as a function...
 – We can easily misuse terms
 • false 0 \(\rightarrow \lambda y.y \)
 • if 0 then ...
 • Everything evaluates to some function
• The same thing happens in assembly language
 – Everything is a machine word (a bunch of bits)
 – All operations take machine words to machine words

Static versus Dynamic Typing

• In a static type system, we guarantee at compile time that all program executions will be free of type errors
 – OCaml and C have static type systems
• In a dynamic type system, we wait until runtime, and halt a program (or raise an exception) if we detect a type error
 – Ruby has a dynamic type system
• Java, C++ have a combination of the two

Simply-Typed Lambda Calculus

\[e ::= n \mid x \mid \lambda x:t.e \mid e \] e

• We’ve added integers \(n \) as primitives
 – Without at least two distinct types (integer and function), can’t have any type errors
 – Functions now include the type of their argument
• \(t ::= \text{int} \mid t \rightarrow t \)
 – int is the type of integers
 – \(t_1 \rightarrow t_2 \) is the type of a function that takes arguments of type \(t_1 \) and returns a result of type \(t_2 \)
 – \(t_1 \) is the \textit{domain} and \(t_2 \) is the \textit{range}
 – Notice this is a recursive definition, so that we can give types to higher-order functions

What is a Type System?

• A type system is some mechanism for distinguishing good programs from bad
 – Good = well typed
 – Bad = ill typed or not typable; has a type error
• Examples
 – 0 + 1 // well typed
 – false 0 // ill-typed; can’t apply a boolean
Type Judgments

• We will construct a type system that proves judgments of the form
 \[A \vdash e : t \]
 – “In type environment \(A \), expression \(e \) has type \(t \)”

• If for a program \(e \) we can prove that it has some type, then the program type checks
 – Otherwise the program has a type error, and we'll reject the program as bad

Type Environments

• A type environment is a map from variables names to their types
 – Just like in our operational semantics for Scheme

• \(\emptyset \) is the empty type environment

• \(A, x : t \) is just like \(A \), except \(x \) now has type \(t \)

• When we see a variable in the program, we'll look up its type in the environment

Type Rules

\[e ::= n \mid x \mid \lambda x : t. e \mid e e \]

\[A \vdash n : \text{int} \]
\[A \vdash x : A(x) \]
\[A, x : t \vdash e : t' \]
\[A \vdash \lambda x : t. e : t' \]
\[A \vdash e : t \rightarrow t' \]
\[A \vdash e' : t \]
\[A \vdash e e' : t' \]

Example

\[A = + : \text{int} \rightarrow \text{int} \rightarrow \text{int} \]
\[B = A, x : \text{int} \]
\[B \vdash + : i \rightarrow i \rightarrow i \]
\[B \vdash x : \text{int} \]
\[B \vdash + x : \text{int} \rightarrow \text{int} \]
\[B \vdash 3 : \text{int} \]
\[B \vdash + x 3 : \text{int} \]
\[A \vdash (\lambda x : \text{int}. + x 3) : \text{int} \rightarrow \text{int} \]
\[A \vdash 4 : \text{int} \]
\[A \vdash (\lambda x : \text{int}. + x 3) 4 : \text{int} \]
Discussion

- The type rules are a kind of logic for reasoning about types of programs
 - The tree of judgments we just saw is a kind of *proof* in this logic that the program has a valid type

- So the *type checking* problem is like solving a jigsaw puzzle
 - Can we apply the rules to a program in such a way as to produce a typing proof?
 - It turns out we can easily decide whether or not we can do this.

Type Inference

- We could extend the rules to show how a language could figure out, even if types aren't specified, what the types of everything are in a program
 - Can you believe there are languages which can actually do this?

- We could do these things, but we actually won't.

An Algorithm for Type Checking

(Write this in OCaml!)

TypeCheck : type env × expression → type

\[
\begin{align*}
\text{TypeCheck}(A, n) &= \text{int} \\
\text{TypeCheck}(A, x) &= \text{if } x \in \text{dom}(A) \text{ then } A(x) \text{ else } \text{fail} \\
\text{TypeCheck}(A, \lambda x:t.e) &= \\
& \quad \text{let } t' = \text{TypeCheck}((A, x:t), e) \text{ in } t \mapsto t' \\
\text{TypeCheck}(A, e_1 e_2) &= \\
& \quad \text{let } t_1 = \text{TypeCheck}(A, e_1) \text{ in} \\
& \quad \text{let } t_2 = \text{TypeCheck}(A, e_2) \text{ in} \\
& \quad \text{if } \text{dom}(t_1) = t_2 \text{ then } \text{range}(t_1) \text{ else } \text{fail}
\end{align*}
\]

Summary

- Lambda calculus shows all the issues with scoping and higher-order functions
- It's useful for understanding how languages work