Abstract Syntax Tree (AST)

- Programs are written in text
 - i.e., sequences of characters
 - Awkward to work with

- First step: Convert to structured representation
 - Use lexer (like flex) to recognize tokens
 - Sequences of characters that make words in the language
 - Use parser (like bison) to group words structurally
 - And, often, to produce AST

Disadvantages of ASTs

- AST has many similar forms
 - E.g., for, while, repeat...until
 - E.g., if, ?, switch

- Expressions in AST may be complex, nested
 - \((42 \cdot y) + (z > 5 ? 12 \cdot z : z + 20)\)

- Want simpler representation for analysis
 - ...at least, for dataflow analysis

CMSC 631 — Program Analysis and Understanding

Fall 2006

Data Flow Analysis

Compiler Structure

- Source code parsed to produce AST
- AST transformed to CFG
- Data flow analysis operates on control flow graph (and other intermediate representations)

ASTs

- ASTs are abstract
 - They don’t contain all information in the program
 - E.g., spacing, comments, brackets, parentheses
 - Any ambiguity has been resolved
 - E.g., \(a + b + c\) produces the same AST as \((a + b) + c\)

- For more info, see CMSC 430
 - In this class, we will generally begin with the AST

Abstract Syntax Tree Example

- \(x := a + b;\)
- \(y := a \cdot b;\)
- while \((y > a)\) {
 - \(a := a + 1;\)
 - \(x := a + b\)
- }

CMSC 430
Control-Flow Graph (CFG)

- A directed graph where
 - Each node represents a statement
 - Edges represent control flow

- Statements may be
 - Assignments $x := y \text{ op } z$ or $x := \text{ op } z$
 - Copy statements $x := y$
 - Branches $\text{goto } L$ or if $x \text{ relop } y \text{ goto } L$
 - etc.

Control-Flow Graph Example

```
x := a + b;
y := a * b;
while (y > a + b) {
  a := a + 1;
x := a + b
}
```

Variations on CFGs

- Usually don’t include declarations (e.g., int x;)
 - But there’s usually something in the implementation

- May want a unique entry and exit node
 - Won’t matter for the examples we give

- May group statements into basic blocks
 - A sequence of instructions with no branches into or out of the block

Control-Flow Graph w/Basic Blocks

```
x := a + b;
y := a * b;
while (y > a + b) {
  a := a + 1;
x := a + b
}
```

CFG vs. AST

- CFGs are much simpler than ASTs
 - Fewer forms, less redundancy, simple expressions

- But...AST is a more faithful representation
 - CFGs introduce temporaries
 - Lose block structure of program

- So for AST,
 - Easier to report error + other messages
 - Easier to explain to programmer
 - Easier to unpars to produce readable code

Data Flow Analysis

- A framework for proving facts about programs

- Reasons about lots of little facts

- Little or no interaction between facts
 - Works best on properties about how program computes

- Based on all paths through program
 - Including infeasible paths
Available Expressions

- Expression e is *available* at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e is computed on p

- Optimization
 - If an expression is available, need not be recomputed
 - (At least, if it's still in a register somewhere)

Data Flow Facts

- Is expression e available?
- Facts:
 - $a + b$ is available
 - $a \cdot b$ is available
 - $a + 1$ is available

Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x := a + b$</td>
<td>$a + b$</td>
<td>$a + b$</td>
</tr>
<tr>
<td>$y := a \cdot b$</td>
<td>$a \cdot b$</td>
<td>$a \cdot b$</td>
</tr>
<tr>
<td>$a := a + 1$</td>
<td>$a + 1$, $a + b$, $a \cdot b$</td>
<td>$a + 1$, $a + b$, $a \cdot b$</td>
</tr>
</tbody>
</table>

Computing Available Expressions

- \emptyset
- $\{ a + b \}$
- $\{ a + b, a \cdot b \}$
- $\{ a + b, a \cdot b, y = a \}$
- $\{ a + b, a \cdot b, y = a \}$
- $\{ a + b \}$
- \emptyset
- $\{ a + b \}$
- $\{ a + b \}$
- $\{ a + b \}$

Terminology

- A *join point* is a program point where two branches meet
- Available expressions is a *forward must* problem
 - Forward = Data flow from in to out
 - Must = At join point, property must hold on all paths that are joined

Data Flow Equations

- Let s be a statement
 - $\text{succ}(s) = \{ \text{immediate successor statements of } s \}$
 - $\text{pred}(s) = \{ \text{immediate predecessor statements of } s \}$
 - $\text{In}(s) = \text{program point just before executing } s$
 - $\text{Out}(s) = \text{program point just after executing } s$

- $\text{In}(s) = \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')$
- $\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))$
 - These are also called *transfer functions*
Liveness Analysis

- A variable v is live at program point p if
 - v will be used on some execution path originating from p...
 - before v is overwritten

- Optimization
 - If a variable is not live, no need to keep it in a register
 - If variable is dead at assignment, can eliminate assignment

Data Flow Equations

- Available expressions is a forward must analysis
 - Data flow propagate in same dir as CFG edges
 - Expr is available only if available on all paths

- Liveness is a backward may problem
 - To know if variable live, need to look at future uses
 - Variable is live if used on some path

\[\text{Out}(s) = \bigcup s' \in \text{succ}(s) \text{ ln}(s') \]
\[\text{ln}(s) = \text{Gen}(s) \cup (\text{Out}(s) - \text{Kill}(s)) \]

Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x := a + b$</td>
<td>a, b</td>
<td>x</td>
</tr>
<tr>
<td>$y := a \ast b$</td>
<td>a, b</td>
<td>y</td>
</tr>
<tr>
<td>$y > a$</td>
<td>a, y</td>
<td></td>
</tr>
<tr>
<td>$a := a + 1$</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

Computing Live Variables

\[\{a, b\} \]
\[\{x, a, b\} \]
\[\{y, a, b\} \]
\[\{x, y, a, b\} \]
\[\{a, b\} \]
\[\{a, b\} \]
\[\{x\} \]
\[\{x, y, a, b\} \]
\[\{x, y, a, b\} \]

Very Busy Expressions

- An expression e is very busy at point p if
 - On every path from p, expression e is used before any component of e is changed

- Optimization
 - Can hoist very busy expression computation to p

- What kind of problem?
 - Forward or backward? backward
 - May or must? must

Reaching Definitions

- A definition of a variable v is an assignment to v
- A definition of variable v reaches point p if
 - There is no intervening assignment to v

- Also called def-use information

- What kind of problem?
 - Forward or backward? forward
 - May or must? may
Space of Data Flow Analyses

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching</td>
<td>Available</td>
</tr>
<tr>
<td></td>
<td>definitions</td>
<td>expressions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live variables</td>
<td>Very busy</td>
</tr>
</tbody>
</table>

- Most data flow analyses can be classified this way
 - A few don’t fit: bidirectional analysis
- Lots of literature on data flow analysis

Data Flow Facts and Lattices

- Typically, data flow facts form a lattice
- Example: Available expressions

Partial Orders

- A partial order is a pair \((P, \leq)\) such that
 - \((\leq)\) is reflexive: \(x \leq x\)
 - \((\leq)\) is anti-symmetric: \(x \leq y \text{ and } y \leq x \implies x = y\)
 - \((\leq)\) is transitive: \(x \leq y \text{ and } y \leq z \implies x \leq z\)

Meet and Join Operations

- \(\wedge\) is the meet or greatest lower bound operation:
 - \(a \wedge b \leq a \text{ and } a \wedge b \leq b\)
 - If \(a \leq a \wedge b \text{ and } b \leq a \wedge b\), then \(a \leq a \wedge b\)
- \(\vee\) is the join or least upper bound operation:
 - \(a \vee b \geq a \text{ and } a \vee b \geq b\)
 - If \(a \geq a \vee b \text{ and } b \geq a \vee b\), then \(a \geq a \vee b\)

Lattices

- A partial order is a lattice if meet and join exist for every pair of elements in \(P\)
- A lattice has unique elements \(a\) and \(b\) such that
 - \(a \wedge b = \min\{a, b\}\)
 - \(a \vee b = \max\{a, b\}\)
- In a lattice, \(x \leq y \text{ if } \exists a : x = a \wedge y\)
- A partial order is a complete lattice if meet and join are defined on any set \(S \subseteq P\)

Useful Lattices

- \((2^S, \subseteq)\) forms a lattice for any set \(S\)
 - \(2^S\) is the powerset of \(S\) (set of all subsets)
- If \((S, \subseteq)\) is a lattice, so is \((S, \supseteq)\)
 - i.e., lattices can be flipped
- The lattice for constant propagation
Forward Must Data Flow Algorithm

- \(\text{Out}(s) = \text{Top} \) for all statements \(s \)
- \(\text{// Slight acceleration: Could set Out}(s) = \text{Gen}(s) \cup (\text{Top} - \text{Kill}(s)) \)
- \(W := \{ \text{all statements} \} \) (worklist)

```
repeat
  \( \text{Take } s \text{ from } W \)
  \( \text{In}(s) := n \text{ s' } \epsilon \text{ pred}(s) \text{ Out}(s') \)
  \( \text{temp} := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s)) \)
  \( \text{if (temp \text{~} fn\text{~ Out}(s))} \{ \)
    - Out\( (s) := \text{temp} \)
    - W := W \cup \text{succ}(s) 
  \} 
until W = \emptyset
```
Lattices (P, \leq), cont’d

• Live variables
 - $P =$ sets of variables
 - $S_1 \cap S_2 = S_1 \cup S_2$
 - Top = empty set

• Very busy expressions
 - $P =$ set of expressions
 - $S_1 \cap S_2 = S_1 \cap S_2$
 - Top = set of all expressions

Forward vs. Backward

\[
Out(s) = \text{Top for all } s \\
W \rightarrow \{ \text{all statements } \} \\
\text{repeat} \\
\text{Take } s \text{ from } W \\
\text{temp} := f(s) \text{ (} s' \in \text{pred}(s) \text{)} \\
\text{if (temp \neq Out(s))} \\
\text{Out}(s) := \text{temp} \\
W := W \cup \text{succ}(s) \\
\text{until } W = \emptyset \\
\]

\[
In(s) = \text{Top for all } s \\
W \rightarrow \{ \text{all statements } \} \\
\text{repeat} \\
\text{Take } s \text{ from } W \\
\text{temp} := f(s) \text{ (} s' \in \text{succ}(s) \text{)} \\
\text{if (temp \neq In(s))} \\
\text{In}(s) := \text{temp} \\
W := W \cup \text{pred}(s) \\
\text{until } W = \emptyset \\
\]

Termination Revisited

• How many times can we apply this step:
 - \[
 \text{temp} := f(s) \text{ (} s' \in \text{pred}(s) \text{)} \\
 \text{if (temp \neq Out(s))} \\
 \]
 - Claim: $Out(s)$ only “shrinks”
 - Proof: $Out(s)$ starts out as top
 - So temp = Top after first step
 - Assume $Out(s')$ shrinks for all predecessors s' of s
 - Then $s' \in \text{pred}(s)$ shrinks
 - Since f is monotonic, $f(s) \text{ (} s' \in \text{pred}(s) \text{)}$ shrinks

Least vs. Greatest Fixpoints

• Dataflow tradition: Start with Top, use meet
 - To do this, we need a complete meet semilattice with top, of finite height
 - Complete meet semilattice = meets defined for any set
 - Finite height ensures termination
 - Computes greatest fixpoint

• Denotational semantics tradition: Start with Bottom, use join
 - Computes least fixpoint

Termination Revisited (cont’d)

• A descending chain in a lattice is a sequence
 - $x_0 > x_1 > x_2 > \ldots$
 - The height of a lattice is the length of the longest descending chain in the lattice

• Then, dataflow must terminate in $O(nk)$ time
 - $n =$ # of statements in program
 - $k =$ height of lattice
 - Assumes meet operation takes $O(1)$ time

Least vs. Greatest Fixpoints

• Dataflow tradition: Start with Top, use meet
 - To do this, we need a complete meet semilattice with top, of finite height
 - Complete meet semilattice = meets defined for any set
 - Finite height ensures termination
 - Computes greatest fixpoint

• Denotational semantics tradition: Start with Bottom, use join
 - Computes least fixpoint

Distributive Data Flow Problems

• By monotonicity, we also have
 \[
 f(c \uplus g) \leq f(c) f(1) f(g) \\
 \]

• A function f is distributive if
 \[
 f(c \uplus g) = f(c) f(1) f(g) \\
 \]
Benefit of Distributivity

• Joins lose no information

\[f \rightarrow^h \rightarrow g \]

Accuracy of Data Flow Analysis

• Ideally, we would like to compute the meet over all paths (MOP) solution:

\[MOP(s) = \bigcap_{p \in \text{paths}} f_p(s) \]

What Problems are Distributive?

• Analyses of how the program computes
 - Live variables
 - Available expressions
 - Reaching definitions
 - Very busy expressions

• All Gen/Kill problems are distributive

A Non-Distributive Example

• Constant propagation

\[x := 2 \rightarrow x := 1 \rightarrow y := 2 \rightarrow y := 1 \rightarrow z := x + y \]

Practical Implementation

• Data flow facts = assertions that are true or false at a program point

• Represent set of facts as bit vector
 - Fact represented by bit i
 - Intersection = bitwise and, union = bitwise or, etc

• “Only” a constant factor speedup
 - But very useful in practice

Basic Blocks

• A basic block is a sequence of statements s.t.
 - No statement except the last in a branch
 - There are no branches to any statement in the block except the first

• In practical data flow implementations,
 - Compute Gen/Kill for each basic block
 - Compose transfer functions
 - Store only In/Out for each basic block
 - Typical basic block ~5 statements
Order Matters

- Assume forward data flow problem
 - Let $G = (V, E)$ be the CFG
 - Let k be the height of the lattice

- If G acyclic, visit in topological order
 - Visit head before tail of edge
 - Running time $O(|E|)$
 - No matter what size the lattice

Order Matters — Cycles

- If G has cycles, visit in reverse postorder
 - Order from depth-first search
 - Let $Q = \max$ # back edges on cycle free path
 - Nesting depth
 - Back edge is from node to ancestor on DFS tree
 - Then if $2Q/(Q + 1) \leq 2$ (sufficient, but not necessary)
 - Running time is $\frac{|E|Q + |E|}{Q + 1}$
 - Note direction of req't depends on top vs. bottom

Flow-Sensitivity

- Data flow analysis is flow-sensitive
 - The order of statements is taken into account
 - I.e., we keep track of facts per program point

- Alternative: Flow-insensitive analysis
 - Analysis the same regardless of statement order
 - Standard example: types
 - `t x : int` "x" : int "t"` x = ... x : int "t"

Terminology Review

- Must vs. May
 - (Not always followed in literature)
- Forwards vs. Backwards
- Flow sensitive vs. Flow insensitive
- Distributive vs. Non-distributive

Another Approach: Elimination

- Recall in practice, one transfer function per basic block

- Why not generalize this idea beyond a basic block?
 - "Collapse" larger constructs into smaller ones, combining data flow equations
 - Eventually program collapsed into a single node!
 - "Expand out" back to original constructs, rebuilding information

Lattices of Functions

- Let (P, \leq) be a lattice
- Let M be the set of monotonic functions on P
- Define $f \leq g$ if for all x, $f(x) = g(x)$
- Define the function $f \sqcap g$ as
 - $(f \sqcap g)(x) = f(x) \sqcap g(x)$

- Claim: (M, \leq) forms a lattice
Elimination Methods: Conditionals

\[
\text{ite} = (\text{then} \circ \text{if}) \uparrow (\text{else} \circ \text{if})
\]
\[
\text{Out(if)} = f_{\text{if}}(\text{In(ite))})
\]
\[
\text{Out(then)} = (\text{then} \circ \text{if})(\text{In(ite))})
\]
\[
\text{Out(else)} = (\text{else} \circ \text{if})(\text{In(ite))})
\]

Elimination Methods: Loops

\[
\text{while} = f_{\text{head}}^{\uparrow}
\]
\[
\text{while} \circ f_{\text{body}} \circ f_{\text{while}} \circ f_{\text{head}}
\]

Elimination Methods: Loops (cont’d)

• Let \(f = f_0 \circ \ldots \circ f_i \) (i times)
 \[\hat{f} = \text{id} \]
 \[\hat{f} = f_0 \]
• Let \(g(j) = \text{while} \circ f_{\text{head}} \circ f_{\text{body}}^{\uparrow} \circ f_{\text{while}} \)
• Need to compute limit as \(j \) goes to infinity
 \[\text{Does such a thing exist?} \]
 \[\text{Observe: } g(j+1) \leq g(j) \]

Height of Function Lattice

• Assume underlying lattice \((P, \leq)\) has finite height
 \[\text{What is height of lattice of monotonic functions?} \]
 \[\text{Claim: finite (see homework)} \]
• Therefore, \(g(j) \) converges

Non-Reducible Flow Graphs

• Elimination methods usually only applied to reducible flow graphs
 \[\text{Ones that can be collapsed} \]
 \[\text{Standard constructs yield only reducible flow graphs} \]
• Unrestricted goto can yield irreducible graphs

Comments

• Can also do backwards elimination
 \[\text{Not quite as nice (regions are usually single entry but often not single exit)} \]
• For bit vector problems, elimination efficient
 \[\text{Easy to compose functions, compute meet, etc.} \]
• Elimination originally seemed like it might be faster than iteration
 \[\text{Not really the case} \]
Data Flow Analysis and Functions

- What happens at a function call?
 - Lots of solutions in data flow analysis literature
- In practice, only analyze one procedure at a time
- Consequences
 - Call to function kills all data flow facts
 - May be able to improve depending on language, e.g., function call may not affect locals

More Terminology

- An analysis that models only a single function at a time is *intraprocedural*
- An analysis that takes multiple functions into account is *interprocedural*
- An analysis that takes the whole program into account is...guess?
- Note: *global* analysis means “more than one basic block,” but still within a function

Data Flow Analysis and The Heap

- Data Flow is good at analyzing local variables
 - But what about values stored in the heap?
 - Not modeled in traditional data flow
- In practice: `*x := e`
 - Assume all data flow facts killed (!)
 - Or, assume write through x may affect any variable whose address has been taken
- In general, hard to analyze pointers

Data Flow Analysis and Optimization

- Moore’s Law: Hardware advances double computing power every 18 months.
- Proebsting’s Law: Compiler advances double computing power every 18 years.
- We’ll focus on other uses of data flow analysis in this class (later in the semester)