CMSC 631 – Program Analysis and Understanding
Fall 2006
Lambda Calculus

Motivation
• Commonly-used programming languages are large and complex
 ■ ANSI C99 standard: 538 pages
 ■ ANSI C++ standard: 714 pages
 ■ Java language specification 2.0: 505 pages

• Not good vehicles for understanding language features or explaining program analysis

Goal
• Develop a “core language” that has
 ■ The essential features
 ■ No overlapping constructs
 ■ And none of the cruft
 — Extra features of full language can be defined in terms of the core language (“syntactic sugar”)

• Lambda calculus
 ■ Standard core language for single-threaded procedural programming
 ■ Often with added features (e.g., state); we’ll see that later

Lambda Calculus is Practical!
• An 8-bit microcontroller (Zilog Z8 encore board w/4KB SRAM) computing 1 + 1 using Church numerals in the Lambda calculus

Origins of Lambda Calculus
• Invented in 1936 by Alonzo Church (1903-1995)
 ■ Princeton Mathematician
 ■ Lectures of lambda calculus published in 1941

• Also know for
 — Church’s Thesis
 — All effective computation is expressed by recursive (decidable) functions, i.e., in the lambda calculus
 — Church’s Theorem
 — First order logic is undecidable

Lambda Calculus
• Syntax:
 ■ e ::= x variable
 ■ | λx.e function abstraction
 ■ | e e function application

• Only constructs in pure lambda calculus
 ■ Functions take functions as arguments and return functions as results
 — i.e., the lambda calculus supports higher-order functions
To evaluate \((\lambda x.e_1) \ e_2\)
- Bind \(x\) to \(e_2\)
- Evaluate \(e_1\)
- Return the result of the evaluation

This is called “beta reduction”
- \((\lambda x.e_1) \ e_2 \xrightarrow{\beta} e_1[e_2/x]\)
- \((\lambda x.e_1) \ e_2\) is called a redex
- We’ll usually omit the beta

Syntactic sugar for local declarations
- \(\text{let } x = e_1 \text{ in } e_2\) is short for \((\lambda x.e_2) \ e_1\)

Scope of \(\lambda\) extends as far to the right as possible
- \(\lambda x.\lambda y.x\ y\) is \(\lambda x.(\lambda y.(x\ y))\)

Function application is left associative
- \(x\ y\ z\) is \((x\ y)\ z\)

Beta reduction is not yet precise
- \((\lambda x.e_1) \ e_2 \xrightarrow{\beta} e_1[e_2/x]\)
- what if there are multiple \(x\)’s?

Example:
- \(\text{let } x = a\ \text{ in}\)
- \(\text{let } y = \lambda z.x\ \text{ in}\)
- \(\text{let } x = b\ \text{ in } y\ x\)
- which \(x\)’s are bound to \(a\), and which to \(b\)?

The set of free variables of a term is
- \(\text{FV}(x) = \{x\}\)
- \(\text{FV}(\lambda x.e) = \text{FV}(e) - \{x\}\)
- \(\text{FV}(e_1 \ e_2) = \text{FV}(e_1) \cup \text{FV}(e_2)\)

A term \(e\) is closed if \(\text{FV}(e) = \emptyset\)

A variable that is not free is bound

Terms are equivalent up to renaming of bound variables
- \(\lambda x.e = \lambda y.(e[y/x])\) if \(y \notin \text{FV}(e)\)

This is often called alpha conversion, and we will use it implicitly whenever we need to avoid capturing variables when we perform substitution.
Substitution

- **Formal definition:**
 - \(x[e/x] = e\)
 - \(z[e/x] = z\) if \(z \neq x\)
 - \((e_1 e_2)[e/x] = (e_1[e/x] e_2[e/x])\)
 - \((\lambda z.e)[e/x] = \lambda z.(e[e/x])\) if \(z \neq x\) and \(z \notin \text{FV}(e)\)

- **Example:**
 - \((\lambda x.y \ x) \ x \rightarrow \alpha (\lambda w.y \ w) \ x \rightarrow \beta y \ x\)
 - (We won’t write alpha conversion explicitly in general)

Multi-Argument Functions

- **We can’t (yet) write multi argument functions**
- E.g., a function of two arguments \(\lambda (x, y).e\)
- **Trick:** Take arguments one at a time
 - \(\lambda x.\lambda y.e\)
 - This is a function that, given argument \(x\), returns a function that, given argument \(y\), returns \(e\)
 - \((\lambda x.\lambda y.e) \ a \ b \rightarrow (\lambda y.e[a/x]) \ b \rightarrow e[a/x][b/y]\)
 - This is often called **Currying** and can be used to represent functions with any # of arguments

Booleans

- **true** = \(\lambda x.\lambda y.x\)
- **false** = \(\lambda x.\lambda y.y\)
- **if** a then b else c = a \(b\ c\)

- **Example:**
 - if true then b else c \(\rightarrow (\lambda x.\lambda y.x) \ b \ c \rightarrow (\lambda y.b) \ c \rightarrow b\)
 - if false then b else c \(\rightarrow (\lambda x.\lambda y.y) \ b \ c \rightarrow (\lambda y.y) \ c \rightarrow c\)

Combinators

- **Any closed term is also called a combinator**
 - So **true** and **false** are both combinators

- **Other popular combinators**
 - \(I = \lambda x.x\)
 - \(S = \lambda x.\lambda y.\lambda z.x\ z\ (y\ z)\)
 - \(K = \lambda x.\lambda y.\lambda z.x\ z\ (y\ z)\)
 - Can also define calculi in terms of combinators
 - E.g., the SKI calculus
 - Turns out the SKI calculus is also Turing complete

Pairs

- \((a, b) = \lambda x.\text{if}\ x\ \text{then}\ a\ \text{else}\ b\)
- **fst** = \(\lambda p.p\ \text{true}\)
- **snd** = \(\lambda p.p\ \text{false}\)

- **Then**
 - \(\text{fst}\ (a, b) \rightarrow^* a\)
 - \(\text{snd}\ (a, b) \rightarrow^* b\)
Natural Numbers (Church)

- \(0 = \lambda x.\lambda y.y\)
- \(1 = \lambda x.\lambda y.xy\)
- \(2 = \lambda x.\lambda y.(x y)\)
- i.e., \(n = \lambda x.\lambda y.<\text{apply } x n \text{ times to } y>\)
- succ = \(\lambda z.\lambda x.\lambda y.(z x y)\)
- iszero = \(\lambda z.\lambda y.(\text{false}) \text{ true}\)

Natural Numbers (Scott)

- \(0 = \lambda x.\lambda y.x\)
- \(1 = \lambda x.\lambda y.xy\)
- \(2 = \lambda x.\lambda y.y\)
- i.e., \(n = \lambda x.\lambda y.(n-1)\)
- succ = \(\lambda z.\lambda x.\lambda y.z\)
- pred = \(\lambda z.\lambda x.0(\lambda x.x)\)
- iszero = \(\lambda z.\lambda x.\text{true}(\lambda x.\text{false})\)

A Nondeterministic Small-Step Semantics

- \((\lambda x.e1) e2 \rightarrow e1[e2/x]\)
- \((\lambda x.e) \rightarrow (\lambda x.e')\)
- \(e \rightarrow e'\)
- \(e2 \rightarrow e2'\)
- \(e1 \rightarrow e1'\)
- \(e1 e2 \rightarrow e1 e2'\)
- \(e1 e2 \rightarrow e1' e2\)
- Does the order of evaluation matter?

The Church-Rosser Theorem

- Lemma (The Diamond Property):
 - If \(a \rightarrow b\) and \(a \rightarrow c\), there exists \(d\) such that \(b \rightarrow^* d\) and \(c \rightarrow^* d\)
- Church Rosser Theorem:
 - If \(a \rightarrow^* b\) and \(a \rightarrow^* c\), there exists \(d\) such that \(b \rightarrow^* d\) and \(c \rightarrow^* d\)
- Proof: By diamond property
- Church-Rosser is also called confluence

Proof
Normal Form

- A term is in normal form if it cannot be reduced
 - Examples: \(\lambda x.x \), \(\lambda x.\lambda y.z \)
 - Some normal forms referred to as values: the "legal" end results of programs
- By Church Rosser Theorem, every term reduces to at most one normal form
- Notice that for our application rule, the argument need not be a normal form

Beta-Equivalence

- Let \(\beta \) be the reflexive, symmetric, and transitive closure of \(\rightarrow \)
 - Usually we think only of reduction; adding symmetry extends this to equivalence
 - E.g., \((\lambda x. y) \ y \ \rightarrow \ y \leftrightarrow (\lambda x. \lambda w. z) \ y \ y \), so all three are beta equivalent
- If \(a =_\beta b \), then \(\exists c \) such that \(a \rightarrow^* c \) and \(b \rightarrow^* c \)
 - Proof: Consequence of Church-Rosser Theorem
 - In particular, if \(a =_\beta b \) and both are normal forms, then they are equal

Not Every Term Has a Normal Form

- Consider
 - \(\Delta = \lambda x.x \ x \)
 - Then \(\Delta \Delta \rightarrow \Delta \Delta \rightarrow \cdots \)
- In general, self application leads to loops
 - ...which is good if we want recursion

A Fixpoint Combinator

- Also called a paradoxical combinator
 - \(Y = \lambda f.(\lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x)) \)
 - Note: There are many versions of this combinator
- Then \(Y \ F =_\beta F \ (Y \ F) \) for any \(F \)
 - \(Y \ F = (\lambda f.(\lambda x.f \ (x \ x)) \ (\lambda x.f \ (x \ x))) \ F \)
 - \(\rightarrow (\lambda x.F \ (x \ x)) \ (\lambda x.F \ (x \ x)) \)
 - \(\rightarrow F \ ((\lambda x.F \ (x \ x)) \ (\lambda x.F \ (x \ x))) \)
 - \(\rightarrow F \ (Y \ F) \)

Example

- Fact \(n = \) if \(n = 0 \) then \(1 \) else \(n \ \text{fact}(n-1) \)
- Let \(G = \lambda f.<\text{body of factorial}> \)
 - i.e., \(G = \lambda f.\lambda n.\text{if } n = 0 \text{ then } 1 \text{ else } n*f(n-1) \)
 - \(Y \ G =_\beta G \ (Y \ G) \)

In Other Words

- The \(Y \) combinator "unrolls" or "unfolds" its argument an infinite number of times
 - \(Y \ G = G \ (Y \ G) = G \ (G \ (Y \ G)) = G \ (G \ (G \ (Y \ G))) = \ldots \)
 - \(G \) needs to have a "base case" to ensure termination
- We can use this trick to encode arbitrary recursion
 - Notice that this only works because we're call-by-name
Encodings

- Encodings are fun
- They show language expressiveness

- In practice, we usually add constructs as primitives
 - Much more efficient
 - Much easier to perform program analysis on and avoid silly mistakes with
 - E.g., our encodings of true and 0 are exactly the same, but we may want to forbid mixing booleans and integers

Lazy vs. Eager Evaluation

- Our non-deterministic reduction rule is fine for theory, but awkward to implement

- Two deterministic strategies:
 - Lazy: Given \((\lambda x.e_1) e_2\), do not evaluate \(e_2\) if \(x\) does not "need" \(e_1\)
 - Also called left-most, call-by-name, call-by-need, applicative, normal-order (with slightly different meanings)
 - Eager: Given \((\lambda x.e_1) e_2\), always evaluate \(e_2\) fully before applying the function
 - Also called call-by-value

Lazy vs. Eager in Practice

- Lazy evaluation (call by name, call by need)
 - Has some nice theoretical properties
 - Terminates more often
 - Lets you play some tricks with "infinite" objects
 - Main example: Haskell

- Eager evaluation (call by value)
 - Is generally easier to implement efficiently
 - Blends more easily with side effects
 - Main examples: Most languages (C, Java, ML, etc.)

Functional Programming

- The \(\lambda\) calculus is a prototypical functional programming language:
 - Lots of higher-order functions
 - No side-effects

- In practice, many functional programming languages are "impure" and permit side-effects
 - But you’re supposed to avoid using them
Functional Programming Today

- Two main camps:
 - Haskell – Pure, lazy functional language; no side effects
 - ML (SML/NJ, OCaml) – Call-by-value, with side effects

- Still around: LISP, Scheme
 - Disadvantage/advantage: No static type systems

Call-by-Name Example

```
OCaml
let cond p x y = if p then x else y
let rec loop () = loop ()
let z = cond true 42 (loop ())
```

```
Haskell
cond p x y = if p then x else y
loop () = loop ()
z = cond True 42 (loop ())
```

3rd argument never used by cond, so never invoked

Two Cool Things to Do with CBN

- Build control structures with functions
  ```
  cond p x y = if p then x else y
  ```

- "Infinite" data structures
  ```
  integers n = n:(integers (n+1))
take 10 (integers 0) (* infinite loop in cbv *)
  ```