1. Let S be a finite set, and let L be the lattice of subsets of S, with order \subseteq. Show that any function $f(x)$ constructed from union, intersection, and constant sets is monotonic. Here, I mean that $f(x) = e$ where e can be specified by the grammar

$$e ::= x \mid S' \mid e \cup e \mid e \cap e$$

where S' is any subset of S. Your proof should be by induction on the structure of e.

2. Suppose that we extend the grammar for e from problem 1 to include the complement operator $!e$, where $!T = S - T$ for some set T. Is f still guaranteed to be monotonic? If it is, justify your answer. If it’s not, provide a counterexample. In addition, explain why a transfer function defined by $Out(stmt) = Gen(stmt) \cup (In(stmt) - Kill(stmt))$, which seems to include negation, is monotonic.

3. Let A be a lattice, with order \leq. Define $A \rightarrow A$ to be the set of all functions from A to A, and define $f \leq' g$ iff $f(x) \leq g(x)$ for all $x \in A$.

- Show that $A \rightarrow A$ with order \leq' is also a lattice. That is, show that for all $f, g \in A \rightarrow A$, $f \sqcup g$ and $f \sqcap g$ always exist.
- Suppose lattice A has height h and that A is finite with n elements. What is the height of the lattice $(A \rightarrow A, \leq')$? (When counting height, count “edges” rather than “nodes,” e.g., if A were the lattice $\{a, b\}$ with $a < b$, then its height would be 1.)

4. A programming language ensures definite initialization when no program in the language is able to read a variable before it is initialized (written). Your task is to ensure that this property holds by designing a dataflow analysis on a simplification of the 3-address code language from project 1 (doesn’t include arrays):

$$lab_stmt ::= stmt$$
$$stmt ::= id:=arg_1 binop arg_2;$$
$$binop ::= + \mid - \mid * \mid /$$
$$relop ::= == \mid != \mid < \mid > \mid >= \mid <=$$
$$id ::= identifier$$
$$label ::= identifier$$
$$arg ::= identifier \mid constant$$

Write down the following about your analysis:

(a) State precisely what your analysis aims to do. Explain how this will be used to ensure definite initialization.

(b) Give the direction of your analysis.

(c) Define the lattice, and define the meet operation.

(d) State how you would initialize the dataflow facts at each program point, including the entry or exit nodes, as appropriate.

(e) Give the transfer functions (e.g., in terms of Gen and $Kill$ functions) for each three-address code statement.