1. For each type, construct a simply-typed lambda calculus term (variables, functions, and function application only) whose most general type is that type, or argue that no term has that type.
 (Hint: You can double-check your answers in OCaml. Extra credit: for any type that has no simply-typed lambda calculus term, give an OCaml term that does have the type.)
 (a) $\alpha \rightarrow \beta \rightarrow \beta$
 (b) $(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \beta \rightarrow \alpha \rightarrow \gamma$
 (c) $\alpha \rightarrow \beta$
 (d) $\alpha \rightarrow \alpha \rightarrow \alpha$

2. Does the simply-typed lambda calculus with integers have a subject expansion property, meaning if $\Gamma \vdash e : \tau$ and $e' \rightarrow e$, does $\Gamma \vdash e' : \tau$? Here \rightarrow is reduction under call-by-value semantics. Either prove that subject expansion holds, or give a counterexample showing that it does not hold.

3. Suppose we were to add booleans to the simply-typed lambda calculus:

 $$e ::= x \mid n \mid true \mid false \mid \lambda x.e \mid e e \mid if \ e \ then \ e \ else \ e$$

 (a) Write down small-step call-by-value semantic rules for the new forms $true$, $false$, and if. (Here if should behave as it does in O’Caml, evaluating to the result of either the true or false branch depending on the guard.)
 (b) Extend the typing judgment $\Gamma \vdash e : \tau$ to the new forms $true$, $false$, and if.
 (c) Prove progress and preservation for the extended language. (You don’t need to reprove the cases for the old forms; make your arguments as extensions to the proof given in the lecture slides.)

4. Suppose we were to add the Y combinator to the simply-typed lambda calculus for defining recursive functions:

 $$e ::= ... \mid Y$$

 As for the above, write small-step, call-by-value semantic rules for this combinator and its typing rule.

 Hint: since you will be defining call-by-value semantics, the Y combinator should take a function as its argument—see the factorial example in the lecture notes.

 Extra credit: add appropriate cases to your progress and preservation lemmas to include Y as well.