Lecture 16:
Rational Numbers

Last time:
1. Aliasing and Mutability
2. Floating Point calculations

Today:
1. Example class development: Rational Numbers
Definition of a Rational Number

- What is a rational number?
- As a decimal it either terminates or repeats a pattern:
 - 1.75
 - 0.242935353535
- As a fraction, it can be represented as a fraction of two integers.
Today we will start an extended example

- We will implement a class, Rational, for (immutable) rational numbers
- The class will include
 - Constructors
 - Arithmetic operations (+, -, *, /)
 - toString
 - Comparisons (equals, compareTo)
“Lowest Terms”?

- How do we represent the fraction 20/60?
 - Reduce to lowest terms.
- Given a fraction p/q, how do you put it into lowest terms?
- Method
 - Find **greatest common divisor (gcd)** of p, q
 - gcd of p, q: largest number that divides both p, q
 - Euclid’s algorithm (beyond scope of this lecture) performs this if p, q are both positive
 - Replace p/q by (p/gcd) / (q/gcd)
- Example
 - Consider 18/24
 - gcd of 18 and 24 is 6
 - So 18/24 = (18/6) / (24/6) = 3/4
Hints

● Come up with representative test cases
● Intertwine implementation and testing
 ● Do constructors and getters first, then test
 ● Implement “related operations”, then test
● Rerun each test (even ones for previously tested methods) when you test
 ● This is called regression testing
 ● Useful for detecting changes that may invalidate previous test results!
 ● Easy to set up in Eclipse
● Use debugger to track down sources of errors in tests
Rational Numbers (continued): Arithmetic Operations

- What you remember from middle / high school
 \[\frac{p}{q} + \frac{s}{t} = \frac{p \cdot t + q \cdot s}{q \cdot t} \]
 \[\frac{p}{q} \cdot \frac{s}{t} = \frac{p \cdot s}{q \cdot t} \]
 \[\frac{p}{q} - \frac{s}{t} = \frac{p}{q} + \left(-\frac{s}{t} \right) \]
 \[\frac{1}{\frac{p}{q}} = \frac{q}{p} \]
 \[\frac{\frac{p}{q}}{\frac{s}{t}} = \frac{p}{q} \cdot \frac{t}{s} = \frac{p}{q} \cdot \left(\frac{1}{\frac{s}{t}} \right) \]

We will focus on these two cases.
Comparisons

- \(\frac{p}{q} = \frac{s}{t} \) if
 - \(\frac{p}{q}, \frac{s}{t} \) are in lowest terms, and
 - \(p = q \) and \(s = t \)

- \(\frac{p}{q} < \frac{s}{t} \) if \(p \cdot t < q \cdot s \)

We will focus on this case.