Lecture 29: Sorting Complexity Revisited

Last time:
1. Inheritance
2. Comparison to composition
Today:
1. Complexity of Bubble Sort
2. Recursion
3. MergeSort

Main Sorting Algorithms

- Bubble sort
- Selection sort
- Insertion sort
- Heap sort
- Merge sort
- Quicksort
- ...

Bubble Sort — what is the complexity?

```java
public static void BS(Comparable[] c) {
    for (int i = 0; i < c.length-1; i++) {
        for (int j = 0; j < c.length-i-1; j++) {
            if (c[j].compareTo(c[j+1]) > 0) {
                Comparable temp = c[j];
                c[j] = c[j+1];
                c[j+1] = temp;
            }
        }
    }
}
```
Analyzing Bubble Sort

- Complexity analysis
 - For each inner loop iteration:
 - One comparison
 - How many iterations?
 - Depends on i: \(n-i-1 \), where \(n \) is number of elements in array \(c \)
 - Worst case: \(i = 0 \)
 - Pass 0: \(n-1 \) iterations
 - Pass 1: \(n-2 \) iterations etc.
 - \(1+2+3+\ldots+(n-2)+(n-1) \)
 - Almost looks like Gauss’ formula!
 - \(1+2+3+\ldots+(n-2)+(n-1)+n = n(n+1)/2 \)
 - So \(1+2+3+\ldots+(n-2)+(n-1) = n(n+1)/2 - n \)
 - We only care about the highest order term: \(O(n^2) \)

There Are Better Sorting Algorithms!

- \(O(n \log_2 n) \) is possible
- We will look at one such algorithm: Merge sort

First, more talk about recursion

- Factorial
  ```java
  int factorial (int n) {
    if (n==1) { return 1; } // Base case to stop recursion
    return n * factorial(n-1); // Factorial(n-1);
  }
  ```
 - Factorial uses “tail recursion” — one single recursive call at the end. Not too inefficient, but still less efficient than using loops (can get call stack overflow).
- Fibonacci
  ```java
  int fib (int n) {
    if (n>1) { return n=fib(n-2) + fib(n-1); } // Two base cases to stop recursion
    return (n==2) ? return 1 : return (n==1) ? return 1 : return (n==0) ? return 1 : return 0;
  }
  ```
 - \(F_b \) is doubly recursive—very hard to illustrate using a stack. Tree illustration:
Pseudo-Code for MergeSort:

```java
public int mergesort(int[] a, int[] b) {
    if (a.length == 1) {
        return a[0];
    }
    int left = mergesort(a);
    int right = mergesort(b);
    return merge(left, right);
}
```

MergeSort Pseudo-Code

- MergeSort Pseudo-Code:
 - Pseudocode for MergeSort:
    ```java
    Mergesort(x[]) {
      if (x.length == 1) { return }
      let a = left half of x
      let b = right half of x
      mergesort(a)
      mergesort(b)
      x = merge(a,b)
    }
    ```
 - The sorting work is done in merge! Java prototype:
    ```java
    Comparable[] merge(Comparable[] a, Comparable[] b)
    ```
 - Postcondition for merge: answer is sorted

Analyzing MergeSort: Divide and Conquer Algorithm

- Divide into smaller problems of size n, n/2, n/4, n/8, etc.
- Conquer: This is the merge step of the Mergesort algorithm
 - First merge arrays of size 1 into arrays of size 2
 - Then arrays of size 2 into arrays of size 4
 - ... until we merge arrays of size n/2 into one array of size n
- Complexity of Mergesort:
 - At each level, there are n steps
 - How many levels are there?
 - log₂n
 - So how many steps total are there?
 - n log₂n
 - So MergeSort is O(n log n)
- Is this a good run time??
 - Yes! Theorem: Fastest possible ‘comparison based sort’ is O(n log n)
 - Mergesort is optimal (and many others too)

Show that MergeSort works using Induction

- Base cases:
 - Show that an array of size k = 1 is sorted by MergeSort: Trivially sorted (since one element). TRUE.
 - Show that an array of size k = 2 is sorted by MergeSort: Divide in half, each of the halves is sorted (see case above k = 1); the merge operation takes two numbers and puts them in the right order. TRUE.
- Inductive step: Show that if it is true for 1/2n, it is also true for n. Since each of the 1/2n are sorted, the merge step will place elements in order in an array of size n in sorted order. TRUE.
- Thus, by induction, MergeSort correctly produces a sorted array of size n.