Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park

CMSC 132:
Object-Oriented Programming II

Algorithm Efficiency

- Efficiency
 - Amount of resources used by algorithm
 - Time, space

- Measuring efficiency
 - Benchmarking
 - Asymptotic analysis

Benchmarking

- Approach
 - Pick some desired inputs
 - Actually run implementation of algorithm
 - Measure time & space needed

- Industry benchmarks
 - SPEC – CPU performance
 - MySQL – Database applications
 - WinStone – Windows PC applications
 - MediaBench – Multimedia applications
 - Linpack – Numerical scientific applications

Advantages
- Precise information for given configuration
- Implementation, hardware, inputs

Disadvantages
- Affected by configuration
 - Data sets (usually too small)
 - Hardware
 - Software
- Affected by special cases (biased inputs)
- Does not measure intrinsic efficiency

Asymptotic Analysis

- Approach
 - Mathematically analyze efficiency
 - Calculate time as function of input size n
 - \(T = \Theta(f(n)) \)
 - \(T \) is on the order of \(f(n) \)
 - "Big O" notation

- Advantages
 - Measures intrinsic efficiency
 - Dominates efficiency for large input sizes

Search Example

- Number guessing game
 - Pick a number between 1…n
 - Guess a number
 - Answer "correct", "too high", "too low"
 - Repeat guesses until correct number guessed
Linear Search Algorithm

- **Algorithm**
 1. Guess number = 1
 2. If incorrect, increment guess by 1
 3. Repeat until correct

- **Example**
 - Given number between 1…100
 - Pick 20
 - Guess sequence = 1, 2, 3, 4 … 20
 - Required 20 guesses

Binary Search Algorithm

- **Algorithm**
 1. Set ∆ to n/4
 2. Guess number = n/2
 3. If too large, guess number – ∆
 4. If too small, guess number + ∆
 5. Reduce ∆ by ½
 6. Repeat until correct

- **Example**
 - Given number between 1…100
 - Pick 20
 - Guesses =
 - 50, ∆ = 25, Answer = too large, subtract ∆
 - 25, ∆ = 12, Answer = too large, subtract ∆
 - 13, ∆ = 6, Answer = too small, add ∆
 - 19, ∆ = 3, Answer = too small, add ∆
 - 22, ∆ = 1, Answer = too large, subtract ∆
 - 21, ∆ = 1, Answer = too large, subtract ∆
 - 20
 - Required 7 guesses

Binary Search Algorithm

- **Analysis of # of guesses needed for 1…n**
 - If number = 1, requires 1 guess
 - If number = n, requires n guesses
 - On average, needs n/2 guesses
 - Time = O(n) = Linear time

Search Comparison

- For number between 1…100
 - Simple algorithm = 50 steps
 - Binary search algorithm = log₂(n) = 7 steps

- For number between 1…100,000
 - Simple algorithm = 50,000 steps
 - Binary search algorithm = log₂(n) (about 17 steps)

Binary search is much more efficient!
Asymptotic Complexity

Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n/2$</td>
<td>$4n+3$</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>

Run time roughly doubles as input size doubles.
Run time increases linearly with input size.

For large values of n:
- Time($2n$) / Time(n) approaches exactly 2
- Both are $O(n)$ programs

Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>log$_2(n)$</td>
<td>$5 \cdot log_2(n) + 3$</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
</tr>
</tbody>
</table>

Run time roughly increases by constant as input size doubles.
Run time increases logarithmically with input size.

For large values of n:
- Time($2n$) – Time(n) approaches constant
- Base of logarithm does not matter
- Simply a multiplicative factor
 \[\log_N = \frac{\log_b N}{\log_b a} \]
- Both are $O(\log(n))$ programs

Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>n^2</td>
<td>$2n^2 + 8$</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>

Run time roughly increases by 4 as input size doubles.
Run time increases quadratically with input size.

For large values of n:
- Time($2n$) / Time(n) approaches 4
- Both are $O(n^2)$ programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs

Formal Definition of Big-O

- Function \(f(n) \) is \(O(g(n)) \) if
 - For some positive constants \(M, N_0 \)
 - \(M \times g(n) \geq f(n) \), for all \(n \geq N_0 \)

- Intuitively
 - For some coefficient \(M \) & all data sizes \(\geq N_0 \)
 - \(M \times g(n) \) is always greater than \(f(n) \)

Big-O Examples

- \(5n + 1000 \Rightarrow O(n) \)
 - Select \(M = 6, N_0 = 1000 \)
 - For \(n \geq 1000 \)
 - \(6n \geq 5n + 1000 \) is always true
 - Example \(\Rightarrow \) for \(n = 1000 \)
 - \(6000 \geq 5000 + 1000 \)

- \(2n^2 + 10n + 1000 \Rightarrow O(n^2) \)
 - Select \(M = 4, N_0 = 100 \)
 - For \(n \geq 100 \)
 - \(4n^2 \geq 2n^2 + 10n + 1000 \) is always true
 - Example \(\Rightarrow \) for \(n = 100 \)
 - \(40000 \geq 20000 + 1000 + 1000 \)

Observations

- Big O categories
 - \(O(\log(n)) \)
 - \(O(n) \)
 - \(O(n^2) \)

- For large values of \(n \)
 - Any \(O(\log(n)) \) algorithm is faster than \(O(n) \)
 - Any \(O(n) \) algorithm is faster than \(O(n^2) \)

- Asymptotic complexity is fundamental measure of efficiency

Comparison of Complexity
Calculating Asymptotic Complexity

- As \(n \) increases
 - Highest complexity term dominates
 - Can ignore lower complexity terms

Examples

- \(2n + 100 \Rightarrow O(n) \)
- \(n \log(n) + 10n \Rightarrow O(n \log(n)) \)
- \(\frac{1}{2}n^2 + 100n \Rightarrow O(n^2) \)
- \(n^3 + 100n^2 \Rightarrow O(n^3) \)
- \(\frac{1}{100}2n + 100n^4 \Rightarrow O(2^n) \)
Complexity Examples

- $1/100 \ 2^n + 100 \ n^4 \Rightarrow O(2^n)$

Types of Case Analysis

- **Can analyze different types (cases) of algorithm behavior**
 - **Types of analysis**
 - Best case
 - Worst case
 - Average case
 - Amortized

Types of Case Analysis

- **Best case**
 - Smallest number of steps required
 - Not very useful
 - Example \Rightarrow Find item in first place checked

- **Worst case**
 - Largest number of steps required
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example \Rightarrow Find item in last place checked

Quicksort Example

- **Quicksort**
 - One of the fastest comparison sorts
 - Frequently used in practice

- **Quicksort algorithm**
 - Pick pivot value from list
 - Partition list into values smaller & bigger than pivot
 - Recursively sort both lists

- **Quicksort properties**
 - Average case $= O(n \log(n))$
 - Worst case $= O(n^2)$
 - Pivot \approx smallest / largest value in list
 - Picking from front of nearly sorted list
 - Can avoid worst-case behavior
 - Select random pivot value
Types of Case Analysis

- **Average case**
 - Number of steps required for “typical” case
 - Most useful metric in practice
- **Different approaches**
 - Average case
 - Expected case

Approaches to Average Case

- **Average case**
 - Average over all possible inputs
 - Assumes all inputs have the same probability
 - Example
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps
- **Expected case**
 - Weighted average over all possible inputs
 - Based on probability of each input
 - Example
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps

Average Case Example

- **Example problem**
 - Average # of comparisons needed to find a number in the (sorted) array \(A[] = \{1, 4, 8, 12, 15\} \) using
 1. Linear search
 - Start from beginning, compare elements one at a time
 2. Binary search
 - Start from middle of array at index \(k \), compare element
 - If not element, repeat for top or bottom half of remaining array depending on whether element is smaller or greater than \(A[k] \)

Average Case : Linear Search

- **Algorithm**
 1. Find # of comparisons needed for each case
 - 1 → 1 comparison (1)
 - 4 → 2 comparisons (1, 4)
 - 8 → 3 comparisons (1, 4, 8)
 - 12 → 4 comparisons (1, 4, 8, 12)
 - 15 → 5 comparisons (1, 4, 8, 12, 15)
 2. Calc average = total # of comparisons / # cases
 - Total # comparisons = 1 + 2 + 3 + 4 + 5 = 15
 - # cases = 5
 - Average = 3 comparisons / number

Average Case : Binary Search

- **Algorithm**
 1. Find # of comparisons needed for each case
 - 1 → 3 comparisons (8, 4, 1)
 - 4 → 2 comparisons (8, 4)
 - 8 → 1 comparisons (8)
 - 12 → 2 comparisons (8, 12)
 - 15 → 3 comparisons (8, 12, 15)
 2. Calc average = total # of comparisons / # cases
 - Total # comparisons = 3 + 2 + 1 + 2 + 3 = 11
 - # cases = 5
 - Average = 2.2 comparisons / number

Average Case Example

- **Example problem 2**
 - Average # of comparisons needed to find a number in a sorted array \(A[n] \) of size \(n \) using
 1. Linear search
 2. Binary search
 - For simplicity, we assume elements are stored in \(A[1] \) ... \(A[n] \)
Average Case : Linear Search

Algorithm
1. Find # of comparisons needed for each case
 ...
2. Calc average = total # of comparisons / # cases
 - Total # comparisons = 1 + 2 + ... + n = ½ n² + 1
 - # cases = n
 - Average = ½ n comparisons / number

Average Case : Binary Search

Algorithm
1. Find # of comparisons needed for each case
 - A[n/2] → 1 comp (A[n/2])
 ...
 (A[n/2], A[n/4], A[n/8]...A[1])
2. Calc average = total # of comparisons / # cases
 - Total # comparisons = n/2 * log₂(n) + n/4 * log₂(n)−1 + ... + 1 = n log₂(n)
 - # cases = n
 - Average = log₂(n) comparisons / number

Amortized Analysis

Approach
- Applies to worst-case sequences of operations
- Finds average running time per operation
- Example
 - Normal case = 10 steps
 - Every 10th case may require 20 steps
 - Amortized time = 11 steps

Assumptions
- Can predict possible sequence of operations
- Know when worst-case operations are needed
- Does not require knowledge of probability

Amortization Example

Non-amortized approach
- Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
- Total cost ⇒ n(n+1)/2

Case analysis
- Best case ⇒ allocation cost = k
- Worse case ⇒ allocation cost = k
- Amortized case ⇒ allocation cost = (n+1)/2

Amortized approach
- Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
- Total cost ⇒ 2 (n − 1)

Case analysis
- Best case ⇒ allocation cost = 0
- Worse case ⇒ allocation cost = 2(k − 1)
- Amortized case ⇒ allocation cost = 2

An individual step might take longer, but faster for any sequence of operations