Algorithm Efficiency

Efficiency
- Amount of resources used by algorithm
 - Time, space

Measuring efficiency
- Benchmarking
- Asymptotic analysis
Benchmarking

Approach
- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time & space needed

Industry benchmarks
- SPEC – CPU performance
- MySQL – Database applications
- WinStone – Windows PC applications
- MediaBench – Multimedia applications
- Linpack – Numerical scientific applications
Benchmarking

Advantages

- Precise information for given configuration
 - Implementation, hardware, inputs

Disadvantages

- Affected by configuration
 - Data sets (usually too small)
 - Hardware
 - Software

- Affected by special cases (biased inputs)
- Does not measure intrinsic efficiency
Asymptotic Analysis

Approach
- Mathematically analyze efficiency
- Calculate time as function of input size n
 - $T \approx O[f(n)]$
 - T is on the order of $f(n)$
 - “Big O” notation

Advantages
- Measures intrinsic efficiency
- Dominates efficiency for large input sizes
Search Example

Number guessing game
- Pick a number between 1…n
- Guess a number
- Answer “correct”, “too high”, “too low”
- Repeat guesses until correct number guessed
Linear Search Algorithm

Algorithm
1. Guess number = 1
2. If incorrect, increment guess by 1
3. Repeat until correct

Example
- Given number between 1…100
- Pick 20
- Guess sequence = 1, 2, 3, 4 … 20
- Required 20 guesses
Linear Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = 1, requires 1 guess
- If number = n, requires n guesses
- On average, needs n/2 guesses
- Time = \(O(n) \) = Linear time
Binary Search Algorithm

Algorithm

- Set Δ to $n/4$
- Guess number = $n/2$
- If too large, guess number – Δ
- If too small, guess number + Δ
- Reduce Δ by $\frac{1}{2}$
- Repeat until correct
Binary Search Algorithm

Example

- Given number between 1…100
- Pick 20
- Guesses =
 - 50, $\Delta = 25$, Answer = too large, subtract Δ
 - 25, $\Delta = 12$, Answer = too large, subtract Δ
 - 13, $\Delta = 6$, Answer = too small, add Δ
 - 19, $\Delta = 3$, Answer = too small, add Δ
 - 22, $\Delta = 1$, Answer = too large, subtract Δ
 - 21, $\Delta = 1$, Answer = too large, subtract Δ
 - 20

- Required 7 guesses
Binary Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = n/2, requires 1 guess
- If number = 1, requires log₂(n) guesses
- If number = n, requires log₂(n) guesses
- On average, needs log₂(n) guesses
- Time = O(log₂(n)) = Log time
Search Comparison

For number between 1…100
- Simple algorithm = 50 steps
- Binary search algorithm = \(\log_2(n) = 7 \) steps

For number between 1…100,000
- Simple algorithm = 50,000 steps
- Binary search algorithm = \(\log_2(n) \) (about 17 steps)

Binary search is much more efficient!
Asymptotic Complexity

Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/2</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

Comparing two functions
- $n/2$ and $4n+3$ behave similarly
- Run time roughly doubles as input size doubles
- Run time increases linearly with input size

For large values of n
- $\frac{\text{Time}(2n)}{\text{Time}(n)}$ approaches exactly 2

Both are $O(n)$ programs
Asymptotic Complexity

Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
<th>$\log_2(n)$</th>
<th>$5 \times \log_2(n) + 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>6</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>9</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - \(\log_2(n) \) and \(5 \times \log_2(n) + 3 \) behave similarly
 - Run time roughly increases by constant as input size doubles
 - Run time increases logarithmically with input size

- For large values of \(n \)
 - \(\text{Time}(2n) - \text{Time}(n) \) approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor
 \[\log_a N = \frac{\log_b N}{\log_b a} \]
 - Both are \(O(\log(n)) \) programs
Asymptotic Complexity

Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>n^2</th>
<th>$2n^2 + 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>132</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
<td>520</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

Comparing two functions
- \(n^2 \) and \(2n^2 + 8 \) behave similarly
- Run time roughly increases by 4 as input size doubles
- Run time increases quadratically with input size

For large values of \(n \)
- \(\frac{\text{Time}(2n)}{\text{Time}(n)} \) approaches 4

Both are \(O(n^2) \) programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs

```
# steps
input size
```

```
O(…)
f(n)
```
Formal Definition of Big-O

Function $f(n)$ is $O(g(n))$ if

- For some positive constants M, N_0
- $M \times g(n) \geq f(n)$, for all $n \geq N_0$

Intuitively

- For some coefficient M & all data sizes $\geq N_0$
 - $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

5n + 1000 \Rightarrow O(n)

Select M = 6, N_0 = 1000

For n \geq 1000

6n \geq 5n + 1000 is always true

Example \Rightarrow for n = 1000

6000 \geq 5000 + 1000
Big-O Examples

2n^2 + 10n + 100 \Rightarrow O(n^2)

- Select M = 4, N_0 = 100
- For n \geq 100
 - 4n^2 \geq 2n^2 + 10n + 1000 is always true
- Example \Rightarrow for n = 100
 - 40000 \geq 20000 + 1000 + 1000
Observations

- Big O categories
 - $O(\log(n))$
 - $O(n)$
 - $O(n^2)$

- For large values of n
 - Any $O(\log(n))$ algorithm is faster than $O(n)$
 - Any $O(n)$ algorithm is faster than $O(n^2)$

- Asymptotic complexity is fundamental measure of efficiency
Comparison of Complexity

A Comparison of Orders

n
$\frac{1}{2}n^2$
n^3
Complexity Category Example

The graph illustrates the growth of solution steps for different problem sizes. The x-axis represents the problem size, and the y-axis represents the number of solution steps. The graph shows the growth rates for the following categories:

- 2^n
- n^2
- $n \log(n)$
- n
- $\log(n)$

Table of Complexity Categories

<table>
<thead>
<tr>
<th>Complexity Category</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^n</td>
<td>2^n</td>
</tr>
<tr>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>$n \log(n)$</td>
<td>$n \log(n)$</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>$\log(n)$</td>
<td>$\log(n)$</td>
</tr>
</tbody>
</table>
Complexity Category Example

- 2^n
- n^2
- $n\log(n)$
- n
- $\log(n)$

Problem Size

of Solution Steps
Calculating Asymptotic Complexity

As \(n \) increases
- Highest complexity term dominates
- Can ignore lower complexity terms

Examples
- \(2n + 100 \) \(\Rightarrow O(n) \)
- \(n \log(n) + 10n \) \(\Rightarrow O(n\log(n)) \)
- \(\frac{1}{2}n^2 + 100n \) \(\Rightarrow O(n^2) \)
- \(n^3 + 100n^2 \) \(\Rightarrow O(n^3) \)
- \(\frac{1}{100}2^n + 100n^4 \) \(\Rightarrow O(2^n) \)
Complexity Examples

2n + 100 ⇒ O(n)
 Complexity Examples

\(\frac{1}{2} n \log(n) + 10n \Rightarrow O(n\log(n)) \)
Complexity Examples

\[\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2) \]
Complexity Examples

\[1/100 \, 2^n + 100 \, n^4 \Rightarrow O(2^n) \]
Types of Case Analysis

Can analyze different types (cases) of algorithm behavior

Types of analysis

- Best case
- Worst case
- Average case
- Amortized
Types of Case Analysis

- Best case
 - Smallest number of steps required
 - Not very useful
 - Example \Rightarrow Find item in first place checked
Types of Case Analysis

Worst case
- Largest number of steps required
- Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
- Example ⇒ Find item in last place checked
Quicksort Example

Quicksort
- One of the fastest comparison sorts
- Frequently used in practice

Quicksort algorithm
- Pick pivot value from list
- Partition list into values smaller & bigger than pivot
- Recursively sort both lists
Quicksort Example

- Quicksort properties
 - Average case = $O(n \log(n))$
 - Worst case = $O(n^2)$
 - Pivot ≈ smallest / largest value in list
 - Picking from front of nearly sorted list
- Can avoid worst-case behavior
 - Select random pivot value
Types of Case Analysis

Average case
- Number of steps required for “typical” case
- Most useful metric in practice
- Different approaches
 - Average case
 - Expected case
Approaches to Average Case

- **Average case**
 - **Average over all possible inputs**
 - Assumes all inputs have the same probability
 - **Example**
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

- **Expected case**
 - **Weighted average over all possible inputs**
 - Based on probability of each input
 - **Example**
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Average Case Example

Example problem

- **Average # of comparisons needed to find a number in the (sorted) array** $A[] = \{1, 4, 8, 12, 15\}$ **using**

 1. **Linear search**
 - Start from beginning, compare elements one at a time

 2. **Binary search**
 - Start from middle of array at index k, compare element
 - If not element, repeat for top or bottom half of remaining array depending on whether element is smaller or greater than $A[k]$
Average Case : Linear Search

Algorithm

1. **Find # of comparisons needed for each case**
 - 1 → 1 comparison (1)
 - 4 → 2 comparisons (1, 4)
 - 8 → 3 comparisons (1, 4, 8)
 - 12 → 4 comparisons (1, 4, 8, 12)
 - 15 → 5 comparisons (1, 4, 8, 12, 15)

2. **Calc average = total # of comparisons / # cases**
 - Total # comparisons = 1 + 2 + 3 + 4 + 5 = 15
 - # cases = 5
 - Average = 3 comparisons / number
Average Case : Binary Search

Algorithm

1. Find # of comparisons needed for each case
 - 1 → 3 comparisons (8, 4, 1)
 - 4 → 2 comparisons (8, 4)
 - 8 → 1 comparisons (8)
 - 12 → 2 comparisons (8, 12)
 - 15 → 3 comparisons (8, 12, 15)

2. Calc average = total # of comparisons / # cases
 - Total # comparisons = 3 + 2 + 1 + 2 + 3 = 11
 - # cases = 5
 - Average = 2.2 comparisons / number
Average Case Example

Example problem 2

- Average # of comparisons needed to find a number in a sorted array A[n] of size n using
 1. Linear search
 2. Binary search

- For simplicity, we assume elements are stored in A[1] ... A[n]
Average Case: Linear Search

Algorithm

1. Find # of comparisons needed for each case
 ...

2. Calc average = total # of comparisons / # cases
 - Total # comparisons = 1 + 2 + ... + n = ½ n^2 + 1
 - # cases = n
 - Average ≈ ½ n comparisons / number
Average Case : Binary Search

Algorithm

1. Find # of comparisons needed for each case
 - A[n/2] → 1 comp (A[n/2])
 ...

2. Calc average = total # of comparisons / # cases
 - Total # comparisons = n/2 * log₂(n) + n/4 * log₂(n)–1 + ... + 1 = n log₂(n)
 - # cases = n
 - Average ≈ log₂(n) comparisons / number
Amortized Analysis

- **Approach**
 - Applies to worst-case sequences of operations
 - Finds average running time per operation
 - Example
 - Normal case = 10 steps
 - Every 10th case may require 20 steps
 - Amortized time = 11 steps

- **Assumptions**
 - Can predict possible sequence of operations
 - Know when worst-case operations are needed
 - Does not require knowledge of probability
Amortization Example

- Adding numbers to end of array of size k
 - If array is full, allocate new array
 - Allocation cost is O(size of new array)
 - Copy over contents of existing array

- Two approaches
 - Non-amortized
 - If array is full, allocate new array of size $k+1$
 - Amortized
 - If array is full, allocate new array of size $2k$
 - Compare their allocation cost
Amortization Example

Non-amortized approach

Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Total cost \(\Rightarrow n(n+1)/2 \)

Case analysis

Best case \(\Rightarrow \) allocation cost = k
Worse case \(\Rightarrow \) allocation cost = k
Amortized case \(\Rightarrow \) allocation cost = \((n+1)/2 \)
Amortization Example

Amortized approach

Allocation cost as table grows from 1..n

<table>
<thead>
<tr>
<th>Size (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total cost \(\Rightarrow 2(n-1) \)

Case analysis

- Best case \(\Rightarrow \) allocation cost = 0
- Worse case \(\Rightarrow \) allocation cost = 2(k – 1)
- Amortized case \(\Rightarrow \) allocation cost = 2

An individual step might take longer, but faster for any sequence of operations