CMSC 132:
Object-Oriented Programming II

Overview
- Critical sections
- Comparing complexity
- Types of complexity analysis

Algorithmic Complexity II
Department of Computer Science
University of Maryland, College Park

Analyzing Algorithms
- Goal
 - Find asymptotic complexity of algorithm
- Approach
 - Ignore less frequently executed parts of algorithm
 - Find critical section of algorithm
 - Determine how many times critical section is executed as function of problem size

Critical Section of Algorithm
- Heart of algorithm
- Dominates overall execution time
- Characteristics
 - Operation central to functioning of program
 - Contained inside deeply nested loops
 - Executed as often as any other part of algorithm
- Sources
 - Loops
 - Recursion

Critical Section Example 1
- Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++)
 3. B
 4. C
- Code execution
 - A ⇒ once
 - B ⇒ n times
 - C ⇒ once
- Time ⇒ 1 + n + 1 = O(n)

Critical Section Example 2
- Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++)
 3. B
 4. for (int j = 0; j < n; j++)
 5. C
 6. D
- Code execution
 - A ⇒ once
 - B ⇒ n times
 - C ⇒ n^2 times
 - D ⇒ once
- Time ⇒ 1 + n + n^2 + 1 = O(n^2)
Critical Section Example 3

Code (for input size n)
1. A
2. for (int i = 0; i < n; i++)
3. for (int j = i+1; j < n; j++)
4. B

Code execution
- A ⇒ once
- B ⇒ \(\frac{n}{2} (n-1)\) times
- Time ⇒ \(1 + \frac{1}{2} n^2 = O(n^2)\)

Critical Section Example 4

Code (for input size n)
1. A
2. for (int i = 0; i < n; i++)
3. for (int j = 0; j < 10000; j++)
4. B

Code execution
- A ⇒ once
- B ⇒ 10000 \(n\) times
- Time ⇒ \(1 + 10000 n = O(n)\)

Critical Section Example 5

Code (for input size n)
1. for (int i = 0; i < n; i++)
2. for (int j = 0; j < n; j++)
3. A
4. for (int i = 0; i < n; i++)
5. for (int j = 0; j < n; j++)
6. B

Code execution
- A ⇒ \(n^2\) times
- B ⇒ \(n^2\) times
- Time ⇒ \(n^2 + n^2 = O(n^2)\)

Critical Section Example 6

Code (for input size n)
1. i = 1
2. while (i < n)
3. A
4. i = 2 \(i\)
5. B

Code execution
- A ⇒ \(\log(n)\) times
- B ⇒ 1 times
- Time ⇒ \(\log(n) + 1 = O(\log(n))\)

Critical Section Example 7

Code (for input size n)
1. DoWork (int n)
2. if (n == 1)
3. A
4. else
5. DoWork(n/2)
6. DoWork(n/2)

Code execution
- A ⇒ \(1\) times
- DoWork(n/2) ⇒ \(2\) times
- Time(1) ⇒ \(1\)
- Time(n) = \(2 \times \text{Time}(n/2) + 1\)

Recursive Algorithms

Definition
- An algorithm that calls itself

Components of a recursive algorithm
1. Base cases
 - Computation with no recursion
2. Recursive cases
 - Recursive calls
 - Combining recursive results
Recursive Algorithm Example

- Code (for input size n)
 1. DoWork (int n)
 2. if (n == 1)
 3. A
 4. else
 5. DoWork(n/2)
 6. DoWork(n/2)

Asymptotic Complexity Categories

- Complexity Name Example
 - O(1) Constant Array access
 - O(log(n)) Logarithmic Binary search
 - O(n) Linear Largest element
 - O(n log(n)) N log N Optimal sort
 - O(n^2) Quadratic 2D Matrix addition
 - O(n^3) Cubic 2D Matrix multiply
 - O(n^k) Polynomial Linear programming
 - O(k^n) Exponential Integer programming

From smallest to largest
For size n, constant k > 1

Comparing Complexity

- Compare two algorithms
 - f(n), g(n)
- Determine which increases at faster rate
 - As problem size n increases
- Can compare ratio
 - If ∞, f() is larger
 - If 0, g() is larger
 - If constant, then same complexity

Complexity Comparison Examples

- log(n) vs. n^0.5
 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} \to 0
 \]

- 1.001^n vs. n^1000
 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} \to \frac{1.001^n}{n^{1000}} \to ??
 \]
 [Not clear, use L’Hopital’s Rule]

Additional Complexity Measures

- Upper bound
 - Big-O \(\Rightarrow O(\ldots) \)
 - Represents upper bound on # steps
- Lower bound
 - Big-Omega \(\Rightarrow \Omega(\ldots) \)
 - Represents lower bound on # steps
- Combined bound
 - Big-Theta \(\Rightarrow \Theta(\ldots) \)
 - Represents combined upper/lower bound on # steps
 - Best possible asymptotic solution

2D Matrix Multiplication Example

- Problem
 - \(C = A \times B \)
- Lower bound
 - \(\Omega(n^2) \) Required to examine 2D matrix
- Upper bounds
 - \(O(n^2) \) Basic algorithm
 - \(O(n^{2.807}) \) Strassen’s algorithm (1969)
 - \(O(n^{2.376}) \) Coppersmith & Winograd (1987)
- Improvements still possible (open problem)
 - Since upper & lower bounds do not match
Additional Complexity Categories

- **Name** | **Description**
- NP | Nondeterministic polynomial time (NP)
- PSPACE | Polynomial space
- EXPSPACE | Exponential space
- Decidable | Can be solved by finite algorithm
- Undecidable | Not solvable by finite algorithm

Mostly of academic interest only
- Quadratic algorithms usually too slow for large data
- Use fast heuristics to provide non-optimal solutions

NP Time Algorithm

- Polynomial solution possible
 - If make correct guesses on how to proceed
- Required for many fundamental problems
 - Boolean satisfiability
 - Traveling salesman problem (TLP)
 - Bin packing
- Key to solving many optimization problems
 - Most efficient trip routes
 - Most efficient schedule for employees
 - Most efficient usage of resources

Properties of NP
- Can be solved with exponential time
- Not proven to require exponential time
- Currently solve using heuristics

NP-complete problems
- Representative of all NP problems
- Solution can be used to solve any NP problem
- Examples
 - Boolean satisfiability
 - Traveling salesman

Are NP problems solvable in polynomial time?
- Prove $P=NP$
 - Show polynomial time solution exists for any NP-complete problem
- Prove $P \neq NP$
 - Show no polynomial-time solution possible
 - The expected answer

Important open problem in computer science
- 1 million prize offered by Clay Math Institute

Algorithmic Complexity Summary

- Asymptotic complexity
 - Fundamental measure of efficiency
 - Independent of implementation & computer platform

Learned how to
- Examine program
- Find critical sections
- Calculate complexity of algorithm
- Compare complexity