CMSC 132: Object-Oriented Programming II

Trees & Binary Search Trees

Department of Computer Science
University of Maryland, College Park
Trees are hierarchical data structures

- One-to-many relationship between elements

Tree node / element

- Contains data
- Referred to by only 1 (parent) node
- Contains links to any number of (children) nodes
Trees

Terminology
- **Root**: node with no parent
- **Leaf**: all nodes with no children
- **Interior**: all nodes with children
Trees

Terminology

- **Sibling** ⇒ node with same parent
- **Descendent** ⇒ children nodes & their descendents
- **Subtree** ⇒ portion of tree that is a tree by itself
 ⇒ a node and its descendents
Trees

Terminology

- **Level** ⇒ is a measure of a node’s distance from root
- **Definition of level**
 - If node is the root of the tree, its level is 1
 - Else, the node’s level is 1 + its parent’s level
- **Height (depth)** ⇒ max level of any node in tree

![Diagram showing tree structure with height = 3]
Binary Trees

- Binary tree
- Tree with 0–2 children per node
- Left & right child / subtree
Tree Traversal

- Often we want to
 1. Find all nodes in tree
 2. Determine their relationship

- Can do this by
 1. Walking through the tree in a prescribed order
 2. Visiting the nodes as they are encountered

- Process is called tree traversal
Tree Traversal

Goal
- Visit every node in binary tree

Approaches
- Depth first
 - Preorder ⇒ parent before children
 - Inorder ⇒ left child, parent, right child
 - Postorder ⇒ children before parent
- Breadth first ⇒ closer nodes first
Tree Traversal Methods

- **Pre-order**
 1. Visit node ◼ first
 2. Recursively visit left subtree
 3. Recursively visit right subtree

- **In-order**
 1. Recursively visit left subtree
 2. Visit node ◼ second
 3. Recursively right subtree

- **Post-order**
 1. Recursively visit left subtree
 2. Recursively visit right subtree
 3. Visit node ◼ last
Tree Traversal Methods

- **Breadth-first**

\[
\text{BFS(Node } n) \{ \\
 \text{Queue } Q = \text{new Queue();} \\
 Q.\text{enqueue}(n); \quad \text{// insert node into } Q \\
 \text{while (!Q.\text{empty}())} \{ \\
 n = Q.\text{dequeue}(); \quad \text{// remove next node} \\
 \text{if (} !n.\text{isEmpty}()) \{ \\
 \text{visit}(n); \quad \text{// visit node} \\
 Q.\text{enqueue}(n.\text{Left}()); \quad \text{// insert left subtree in } Q \\
 Q.\text{enqueue}(n.\text{Right}()); \quad \text{// insert right subtree in } Q \\
 \} \}
\]
Tree Traversal Examples

- **Pre-order (prefix)**
 - $+ \times 2 \ 3 \ / \ 8 \ 4$

- **In-order (infix)**
 - $2 \times 3 + 8 / 4$

- **Post-order (postfix)**
 - $2 \ 3 \times 8 \ 4 / +$

- **Breadth-first**
 - $+ \times / \ 2 \ 3 \ 8 \ 4$

Expression tree
Tree Traversal Examples

- **Pre-order**
 - 44, 17, 32, 78, 50, 48, 62, 88

- **In-order**
 - 17, 32, 44, 48, 50, 62, 78, 88

- **Post-order**
 - 32, 17, 48, 62, 50, 88, 78, 44

- **Breadth-first**
 - 44, 17, 78, 32, 50, 88, 48, 62
Types of Binary Trees

- **Degenerate**
 - Mostly 1 child / node
 - Height = $O(n)$
 - Similar to linear list

- **Balanced**
 - Mostly 2 child / node
 - Height = $O(\log(n))$
 - Useful for searches

Degenerate binary tree

Balanced binary tree
Binary Search Trees

Key property
- Value at node
 - Smaller values in left subtree
 - Larger values in right subtree
- Example
 - $X > Y$
 - $X < Z$
Binary Search Trees

Examples

Binary search trees

Non-binary search tree
Binary Tree Implementation

Class Node {
 Value data;
 Node left, right; // null if empty

 void insert (Value data1) { ... }
 void delete (Value data2) { ... }
 Node find (Value data3) { ... }
 ...
}

Iterative Search of Binary Tree

Node Find(Node n, Value key) {
 while (n != null) {
 if (n.data == key) // Found it
 return n;
 if (n.data > key) // In left subtree
 n = n.left;
 else // In right subtree
 n = n.right;
 }
 return null;
}

Find(root, keyValue);
Recursive Search of Binary Tree

Node Find(Node n, Value key) {
 if (n == null) // Not found
 return(n);
 else if (n.data == key) // Found it
 return(n);
 else if (n.data > key) // In left subtree
 return Find(n.left, key);
 else // In right subtree
 return Find(n.right, key);
}

Find(root, keyValue);
Example Binary Searches

Find (2)

```
10
\--5\--30
  \--2\--25\--45
        10 > 2, left
        5 > 2, left
        2 = 2, found
```

```
5
\--2\--45
  \--30
    \--10
      \--25
          5 > 2, left
          2 = 2, found
```
Example Binary Searches

Find (25)

10 < 25, right
30 > 25, left
25 = 25, found

5 < 25, right
45 > 25, left
30 > 25, left
10 < 25, right
25 = 25, found
Binary Search Properties

- **Time of search**
 - Proportional to height of tree
 - Balanced binary tree
 - $O(\log(n))$ time
 - Degenerate tree
 - $O(n)$ time
 - Like searching linked list / unsorted array

- **Requires**
 - Ability to compare key values
Binary Search Tree Construction

How to build & maintain binary trees?
- Insertion
- Deletion

Maintain key property (invariant)
- Smaller values in left subtree
- Larger values in right subtree
Binary Search Tree – Insertion

Algorithm
1. Perform search for value X
2. Search will end at node Y (if X not in tree)
3. If $X < Y$, insert new leaf X as new left subtree for Y
4. If $X > Y$, insert new leaf X as new right subtree for Y

Observations
- $O(\log(n))$ operation for balanced tree
- Insertions may unbalance tree
Example Insertion

Insert (20)

10 < 20, right
30 > 20, left
25 > 20, left

Insert 20 on left
Binary Search Tree – Deletion

Algorithm
1. Perform search for value X
2. If X is a leaf, delete X
3. Else // must delete internal node
 a) Replace with largest value Y on left subtree
 OR smallest value Z on right subtree
 b) Delete replacement value (Y or Z) from subtree

Observation
- $O(\log(n))$ operation for balanced tree
- Deletions may unbalance tree
Example Deletion (Leaf)

Delete (25)

10 < 25, right
30 > 25, left
25 = 25, delete
Example Deletion (Internal Node)

Delete (10)

Replacing 10 with largest value in left subtree

Replacing 5 with largest value in left subtree

Deleting leaf
Example Deletion (Internal Node)

Delete (10)

Replacing 10 with \textit{smallest} value in right subtree

Deleting leaf

Resulting tree
Building Maps w/ Search Trees

Search trees often used to implement maps

- Each non-empty node contains
 - Key
 - Value
 - Left and right child

Need to be able to compare keys

- Generic type `<K extends Comparable<K>>`
 - Denotes any type K that can be compared to K’s
Polymorphic Binary Search Trees

What do we mean by polymorphic?

Implement two subtypes of Tree
1. EmptyTree
2. NonEmptyTree

Use EmptyTree to represent the empty tree
- Rather than null

Invoke methods on tree nodes
- Without checking for null
- Get empty or nonempty functionality
 - Selected by type of tree node
Polymorphic Binary Tree Implement.

Interface Tree {
 Tree insert (Value data1) { ... }
}

Class EmptyTree implements Tree {
 Tree insert (Value data1) { ... }
}

Class NonEmptyTree implements Tree {
 Value data;
 Tree left, right; // Either Empty or NonEmpty
 Tree insert (Value data1) { ... }
}
Example: Standard Binary Tree

Class Node {
 Node left, right;
}

Node X {
 left = Y;
 right = Z;
}

Node Y {
 left = null;
 right = null;
}

Node Z {
 left = null;
 right = W;
}

Node W {
 left = null;
 right = null;
}
Example: Polymorphic Binary Tree

Class EmptyTree {
}
Class NonEmptyTree {
 Tree left, right;
}

NonEmpty X {
 left = Y;
 right = Z;
}

NonEmpty Y {
 left = S;
 right = S;
}

NonEmpty Z {
 left = S;
 right = W;
}

NonEmpty W {
 left = S;
 right = S;
}

EmptyTree S {
}

Diagram showing the structure of the binary tree with nodes X, Y, Z, and W, and edges connecting them.