Overview

- Binary trees
 - Full, Perfect, Complete
- Heaps
 - Insert
 - getSmallest
- Heap applications
 - Heapsort
 - Priority queues

Full Binary Tree

- Binary tree where all nodes have 0 or 2 children

Perfect Binary Tree

- A full binary tree where
 - All leaves at level \(h \) for tree of height \(h \)

Complete Binary Trees

- An binary tree (height \(h \)) where
 - Perfect tree to level \(h-1 \)
 - Leaves at level \(h \) are as far left as possible

Basic complete tree shape
Heaps

- Two key properties
 - Complete binary tree
 - Value at node
 - Smaller than or equal to values in subtrees

- Example heap
 - $X \leq Y$
 - $X \leq Z$

Heaps & Non-heap Examples

Heaps

- Heaps are balanced trees
 - Height = $\log_2(n) = O(\log(n))$

- Can find smallest element easily
 - Always at top of heap!

- Can organize heap to find maximum value
 - Value at node larger than values in subtrees
 - Heap can track either min or max, but not both

Heap Properties

Heap

- Key operations
 - Insert (X)
 - getSmallest()

- Key applications
 - Heapsort
 - Priority queue

Heap Operations – Insert(X)

- Algorithm
 1. Add X to end of tree
 2. While (X < parent)
 Swap X with parent // X bubbles up tree

- Complexity
 - # of swaps proportional to height of tree
 - $O(\log(n))$

Heap Insert Example

- Insert (20)

 1) Insert to end of tree
 2) Compare to parent, swap if parent key larger
 3) Insert complete
Heap Insert Example

Insert (8)

1) Insert to end of tree
2) Compare to parent, swap if parent key larger
3) Insert complete

![Heap Insert Example Diagram]

Heap Operation – getSmallest()

Algorithm

1. Get smallest node at root
2. Replace root with X at end of tree
3. While (X > child)
 - Swap X with smallest child // X drops down tree
4. Return smallest node

Complexity

- # swaps proportional to height of tree
- $O(\log(n))$

Heap GetSmallest Example

getSmallest ()

1) Replace root with end of tree
2) Compare node to children, if larger swap with smallest child
3) Repeat swap if needed

![Heap GetSmallest Example Diagram]

Heap Implementation

Can implement heap as array

- Store nodes in array elements
- Assign location (index) for elements using formula

![Heap Implementation Diagram](image)

Observations

- Compact representation
- Edges are implicit (no storage required)
- Works well for complete trees (no wasted space)
Heap Implementation

Calculating node locations
- Array index i starts at 0
- $\text{Parent}(i) = \left\lfloor \frac{(i - 1)}{2} \right\rfloor$
- $\text{LeftChild}(i) = 2 \times i + 1$
- $\text{RightChild}(i) = 2 \times i + 2$

Example
- $\text{Parent}(1) = \left\lfloor \frac{(1 - 1)}{2} \right\rfloor = \left\lfloor \frac{0}{2} \right\rfloor = 0$
- $\text{Parent}(2) = \left\lfloor \frac{(2 - 1)}{2} \right\rfloor = \left\lfloor \frac{1}{2} \right\rfloor = 0$
- $\text{Parent}(3) = \left\lfloor \frac{(3 - 1)}{2} \right\rfloor = \left\lfloor \frac{2}{2} \right\rfloor = 1$
- $\text{Parent}(4) = \left\lfloor \frac{(4 - 1)}{2} \right\rfloor = \left\lfloor \frac{3}{2} \right\rfloor = 1$
- $\text{Parent}(5) = \left\lfloor \frac{(5 - 1)}{2} \right\rfloor = \left\lfloor \frac{4}{2} \right\rfloor = 2$

Example
- $\text{LeftChild}(0) = 2 \times 0 + 1 = 1$
- $\text{LeftChild}(1) = 2 \times 1 + 1 = 3$
- $\text{LeftChild}(2) = 2 \times 2 + 1 = 5$

Example
- $\text{RightChild}(0) = 2 \times 0 + 2 = 2$
- $\text{RightChild}(1) = 2 \times 1 + 2 = 4$

Heap Application – Heapsort

Use heaps to sort values
- Heap keeps track of smallest element in heap

Algorithm
1. Create heap
2. Insert values in heap
3. Remove values from heap (in ascending order)

Complexity
- $O(n \log(n))$

Heapsort Example

Input
- 11, 5, 13, 6, 1

View heap during insert, removal
- As tree
- As array
Heapsort – Insert Values

(a) Insert 11

(b) Insert 5

(c) Rebuild heap

(d) Insert 13

(e) Insert 6

(f) Rebuild heap

(g) Insert 1

(h) Rebuild heap

Heapsort – Remove Values

(a) Print root = 1

(b) Rebuild heap

(c) Print root = 5

(d) Rebuild heap

(e) Print root = 6

(f) Rebuild heap

(g) Print root = 11

(h) Rebuild heap

Done

Heapsort – Insert in to Array 1

- Input
 - 11, 5, 13, 6, 1

 Index = 0 1 2 3 4
 Insert 11 11

Heapsort – Insert in to Array 2

- Input
 - 11, 5, 13, 6, 1

 Index = 0 1 2 3 4
 Insert 5 11 5
 Swap 5 11

Heapsort – Insert in to Array 3

- Input
 - 11, 5, 13, 6, 1

 Index = 0 1 2 3 4
 Insert 13 5 11 13

Heapsort – Insert in to Array 4

- Input
 - 11, 5, 13, 6, 1

 Index = 0 1 2 3 4
 Insert 6 5 11 13 6
 Swap 5 6 13 11...
Heapsort – Remove from Array 1

Input
- 11, 5, 13, 6, 1

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove root</td>
<td>1</td>
<td>5</td>
<td>13</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Replace</td>
<td>6</td>
<td>5</td>
<td>13</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Swap w/ child</td>
<td>5</td>
<td>6</td>
<td>13</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Heapsort – Remove from Array 2

Input
- 11, 5, 13, 6, 1

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove root</td>
<td>5</td>
<td>6</td>
<td>13</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Replace</td>
<td>11</td>
<td>6</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swap w/ child</td>
<td>6</td>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heap Application – Priority Queue

Queue
- Linear data structure
- First-in First-out (FIFO)
- Implement as array / linked list

Priority Queue
- Elements are assigned priority value
- Higher priority elements are taken out first
- Equal priority elements are taken out in FIFO order
- Implement as heap
 - Enqueue ⇒ insert()
 - Dequeue ⇒ getSmallest()

Properties
- Lower value = higher priority
- Heap keeps highest priority items in front

Complexity
- Enqueue ⇒ insert() = O(log(n))
- Dequeue ⇒ getSmallest() = O(log(n))
- For any heap

Queue
- Linear data structure
- First-in First-out (FIFO)
- Implement as array / linked list

Priority queue
- Elements are assigned priority value
- Higher priority elements are taken out first
- Equal priority elements are taken out in FIFO order
- Implement as heap
 - Enqueue ⇒ insert()
 - Dequeue ⇒ getSmallest()

Properties
- Lower value = higher priority
- Heap keeps highest priority items in front

Complexity
- Enqueue ⇒ insert() = O(log(n))
- Dequeue ⇒ getSmallest() = O(log(n))
- For any heap

Heap vs. Binary Search Tree

Binary search tree
- Keeps values in sorted order
- Find any value
 - O(log(n)) for balanced tree
 - O(n) for degenerate tree (worst case)

Heap
- Keeps smaller values in front
- Find minimum value
 - O(log(n)) for any heap