CMSC 132: Object-Oriented Programming II

Graph Implementations & Single Source Shortest Path Algorithm

Department of Computer Science
University of Maryland, College Park

Graph Implementation

- How do we represent edges?
 - Adjacency matrix
 - 2D array of neighbors
 - Adjacency list
 - List of neighbors
 - Adjacency set / map
 - Set / map of neighbors

- Important for very large graphs
 - Affects efficiency / storage

Adjacency Matrix

- **Representation**
 - 2D array
 - Position \(j, k \) ⇒ edge between nodes \(n_j, n_k \)

- **Example**
 - [Adjacency Matrix Diagram](image)

Adjacency List

- **Representation**
 - For each node, store
 - List of neighbors / successors
 - Linked list
 - Array list
 - For weighted graph
 - Also store weight for each edge
 - For undirected graph with edge \((a \leftrightarrow b)\)
 - Nodes \(a\) & \(b\) need to store each other as neighbor
 - For directed graph with edge \((a \rightarrow b)\)
 - Node \(a\) needs to store node \(b\) as neighbor

Adjacency Matrix (cont.)

- **Representation**
 - Single array for entire graph
 - Undirected graph
 - Only upper / lower triangle matrix needed
 - Since \(n_j, n_k \) implies \(n_k, n_j \)
 - Unweighted graph
 - Matrix elements ⇒ boolean
 - Weighted graph
 - Matrix elements ⇒ weight

Adjacency List (cont.)

- **Example**
 - Unweighted graph
 - Weighted graph

[Diagram of Adjacency Matrix]

[Diagram of Adjacency List]
Adjacency Set / Map

- **Representation**
 - For each node, store
 - Set or map of neighbors / successors
 - For unweighted graph
 - Use set of neighbors
 - For weighted graph
 - Use map of neighbors, w/ value = weight of edge
 - For undirected graph with edge (a ↔ b)
 - Nodes a & b need to store each other as neighbor
 - For directed graph with edge (a → b)
 - Node a needs to store node b as neighbor

Graph Space Requirements

- **Adjacency matrix**
 - \(\frac{1}{2} N^2 \) entries (for graph with N nodes, E edges)
 - Many empty entries for large, sparse graphs
- **Adjacency list**
 - \(2E \) entries
- **Adjacency set / map**
 - \(2E \) entries
 - Space overhead per entry
 - Higher than for adjacency list

Graph Time Requirements

- **Adjacency matrix**
 - Can find individual edge (a,b) quickly
 - Examine entry in array Edge[a,b]
 - Constant time operation
- **Adjacency list / set / map**
 - Can find all edges for node (a) quickly
 - Iterate through collection of edges for a
 - On average \(E / N \) edges per node

Choosing Graph Implementations

- **Graph density**
 - Ratio edges to nodes (dense vs. sparse)
- **Graph algorithm**
 - **Neighbor based**
 - For each node X in graph
 - For each neighbor Y of X // adj list faster if sparse
 - doWork()
 - **Connection based**
 - For each node X in ...
 - For each node Y in ...
 - if (X,Y) is an edge
 - // adj matrix faster if dense
 - doWork()

Single Source Shortest Path

- **Common graph problem**
 1. Find path from X to Y with lowest edge weight
 2. Find path from X to any Y with lowest edge weight
- **Useful for many applications**
 - Shortest route in map
 - Lowest cost trip
 - Most efficient internet route
- **Dijkstra’s algorithm solves problem 2**
 - Can also be used to solve problem 1
 - Would use different algorithm if only interested in a single destination
Shortest Path – Dijkstra’s Algorithm

- Maintain
 - Nodes with known shortest path from start ⇒ S
 - Cost of shortest path to node K from start ⇒ C[K]
 - Only for paths through nodes in S
 - Predecessor to K on shortest path ⇒ P[K]
- Updated whenever new (lower) C[K] discovered
- Remembers actual path with lowest cost

Shortest Path – Intuition for Dijkstra’s

- At each step in the algorithm
 - Shortest paths are known for nodes in S
 - Store in C[K] length of shortest path to node K (for all paths through nodes in { S })
 - Add to { S } next closest node

- Update distance to J after adding node K
 - Previous shortest path to K already in C[K]
 - Possibly shorter path to J by going through node K
 - Compare C[J] with C[K] + weight of (K,J), update C[J] if needed

Dijkstra’s Shortest Path Example

- Initial state
 - S = ∅

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

- Find shortest paths starting from node 1
 - S = 1

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>
Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 1 not in $\{S\}$
- $S = \{1\}$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>∞</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

$C[2] = \min (\infty, C[1] + (1,2)) = \min (\infty, 0 + 5) = 5$

$C[3] = \min (\infty, C[1] + (1,3)) = \min (\infty, 0 + 8) = 8$

Dijkstra’s Shortest Path Example

- Find node K with smallest $C[K]$ and add to S
- $S = \{1, 2\}$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 2 not in S
- $S = \{1, 2\}$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

$C[3] = \min (8, C[2] + (2,3)) = \min (8, 5 + 1) = 6$

$C[4] = \min (\infty, C[2] + (2,4)) = \min (\infty, 5 + 10) = 15$

Dijkstra’s Shortest Path Example

- Find node K with smallest $C[K]$ and add to S
- $S = \{1, 2, 3\}$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

Dijkstra’s Shortest Path Example

- Update $C[K]$ for all neighbors of 3 not in S
- $\{S\} = 1, 2, 3$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>none</td>
</tr>
</tbody>
</table>

$C[4] = \min (15, C[3] + (3,4)) = \min (15, 6 + 3) = 9$
Dijkstra's Shortest Path Example

- Update C[K] for all neighbors of 4 not in S
- S = { 1, 2, 3, 4 }

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

C[5] = min (∞, C[4] + (4,5)) = min (∞, 9 + 9) = 18

Find node K with smallest C[K] and add to S
S = { 1, 2, 3, 4, 5 }

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

Find shortest path from start to K
- Start at K
- Trace back predecessors in P[]
- Example paths (in reverse)
 - 5 → 4 → 3 → 2 → 1
 - 4 → 3 → 2 → 1
 - 3 → 2 → 1
 - 2 → 1

S = { 1, 2, 3, 4, 5 }