Random Text Generation Project

Goal
- Read in text
- Generate similar semi-random text

Approach
1. Build DenseBag to store word frequencies
2. Use DenseBag to build Markov chain
3. Use Markov chain to generate semi-random text
DenseBag

Properties
- Like a Set
- But can contain duplicates

Examples
- { 1, 3, 1, 1, 3, 5 }
- { 1, 1, 1, 3, 3, 5 }
- { three 1’s, two 3’s, one 5 }
- All represent same DenseBag
DenseBag<E> Operations

Operations supported

- Set<E> getUniqueElements()
- int getCount(E e)
- E choose(Random r)

Examples

- Given DenseBag<Integer> x = { 1, 1, 1, 3, 3, 5 };
 - x. getUniqueElements() ➞ { 1, 3, 5 }
 - x. getCount(1) ➞ 3
 - x. choose(r) ➞ 1 (50%), 3 (33%) or 5 (17%)
DenseBag<E> Operations

Efficiency
- Most operations should take O(1)
 - If using hashing
 - choose(Random r) may take O(|unique items|)

Iterator
- Iterates over all elements
- Order is undefined
Markov Chain

Definition
- A series of states with the Markov property
- Where probability of future states depends only upon the present state and not on any past states

Example
- Probability of X going to S_1 or S_2 is independent of whether P_1 or P_2 originally moved to X

Used in
- Statistical machine learning (artificial intelligence)
Markov Chain For Text

Application of Markov chain
- Represent probability of word following each word
- Based on actual frequencies found in text

Example
- In the text “a b a c a b a b”
 - Word a is followed by b (75%) or c (25%)
 - Markov chain for words following a
Example

For the text “a b a c a b a b”

Markov chain for entire text

[Diagram of a Markov chain with transitions labeled as follows: Start to a with 100%, a to b with 67%, b to end with 33%, a to c with 25%, c to a with 75%.]
Higher-Order Markov Chain

Application

- Can represent probability of word following each group of words (order-k for k consecutive words)

Example

- In the text “a b a c a b a b”
 - Words b a are followed by b (50%) or c (50%)
- Represent with following Markov chain

![Markov chain diagram](attachment:markov_chain_diagram.png)
DenseBag \rightarrow Markov Chain

- DenseBag can represent state in Markov chain
 - Contains output in proportion to probability

Example

- Markov state transitions
- DenseBag

Diagram:

```
    a --75%-- b
    |      |    25%    |
    |      v      |
    c

\rightarrow

\rightarrow

\rightarrow

\rightarrow

a

\{ b, b, b, c \}
```
Approach (for order-n Markov text)

1. Generate higher-order Markov chains
 - Analyze “training” text(s)
2. Represent Markov chains as DenseBags
3. Connect DenseBags
 - To build probabilistic transition table
4. Use transition table to generate text
Handling Start & End of Text

1. Use empty string(s)
 - Start text generation with ""
 - End text if "" generated
 - "" → "a"
 - "","" → "","a"
 - "a" → ""

2. Augment input with <Start> & <End> markers
 - "a b a c" → "<Start> a b a c <End>"
 - Start text generation with <Start>
 - End text if <End> generated