Use constructive induction...

Use constructive induction to set values for a and b in the following equation:

$$\sum_{i=1}^{n} i = an^2 + bn$$
The nth Fibonacci number

The 0th number of the Fibonacci sequence is 0.

The 1st number of the Fibonacci sequence is 1.

The nth number of the Fibonacci sequence is defined as the sum of the previous two numbers in the sequence.

This is a recursive definition, and appears to be an excellent candidate for a recursive solution…

Recursive Algorithm

long fib(int n) {
 if (n<2) return n;
 return fib(n-1)+fib(n-2);
}

Let’s assume that a comparison has a cost of 1 in terms of run-time, and that this is the only cost we care about.

We want to know the run-time of this algorithm on input n. We will call this T(n).
Computing the Run-Time

Given the following recurrence:
\[T(0)=T(1)=1 \]
\[T(i)=T(i-1)+T(i-2) \]
If we assume that \(\exists x \in \mathbb{R}^+ \text{ s.t. } T(n) \leq x^n \)
then we can solve for \(x \).

Can we do better?

- Is there a way to improve the recursive algorithm if we are allowed to allocate an array? Consider the following example using memoization:

```java
long fib(int n) {
    static long Marr[1000] = {0, 1};
    static int Mlast = 1;
    if (n > Mlast) {
        long x = fib(n-1) + fib(n-2);
        Mlast = n;
        Marr[Mlast] = x;
    }
    return Marr[n];
}
```

Does this work?
What is it's run-time?
What about plain iteration?

```c
long fib(int n) {
    long first=0, second=1, tmp;
    for (int i=0; i<n; i++) {
        tmp = first+second;
        first = second;
        second = tmp;
    }
    return first;
}
```

Does it work?
What is it’s run-time?
Can we do better?

How about just a formula?

Let $\Phi = \frac{1+\sqrt{5}}{2}$

Let $\phi = \frac{1-\sqrt{5}}{2}$

$Fib(n) = \Phi^n - \phi^n \frac{\sqrt{5}}{5}$

(proof of this left to homework)

Is this a faster way to compute the n^{th} Fibonacci number?