CMSC 498M: Chapter 8a
Game Physics

Reading:
- Physics for Game Developers, by David M. Bourg, 2002.

Overview:
- Basic physical quantities: Mass, center of mass, moment of inertia.
- Kinematics for particles: Position, velocity, acceleration.
- Kinematics for rigid bodies: Angular velocity, angular acceleration.
- Forces: Springs and friction.

Game Physics: Basic Concepts

Basic Issues:

Kinematics: The study of motion (ignoring forces). How does acceleration affect velocity? How does velocity affect position?
- Particle: A point-mass. Body rotation ignored.
- Rigid body: Rotation of the body needs to be considered.

Force: Objects change motion only when forces are applied.
- Contact vs. field forces: Hitting a baseball vs. gravity or magnetism.
- Torque: Force that induces rotation.
- Environmental sources: Friction, buoyancy, drag/lift.

Kinetics: (also called Dynamics) The effect of force on motion.

Non-rigid Objects:
- Joints and constraints: Rag-doll physics, mass-spring systems.
- Flexible objects: Soft bodies, meshes, cloth, hair.

Complex Motion: Fluid dynamics, smoke, particle systems.

Collisions: Detection and response.
Applications of Physics in Games

Flight simulators
Sports/Racing
Combat Simulation
many others...

Flight simulators: (e.g., for flight simulators)
- Full 3D motion modeling.
- Effects due to lift, drag, turbulence.
- Control issues (how do ailerons, flaps, rudder affect motion).

Sports/Racing: (e.g., for racing games)
- Friction, road resistance, breaking, skidding, drifting.
- Effects of road banking.
- Crashing and tumbling.

Kinetics: How do forces effect the motion of an object.

Projectiles: (e.g., bullets, cannon balls)
- Body rotation may be negligible or totally ignored.
- Effects due to gravity, wind, air resistance.

Aircraft: (e.g., for flight simulators)
- Full 3D motion modeling.
- Effects due to lift, drag, turbulence.
- Control issues (how do ailerons, flaps, rudder affect motion).

Ships: (and floating objects)
- Buoyancy and flotation.
- Motion resistance and fluid dynamics.

Cars: (e.g. for racing games)
- Friction, road resistance, breaking, skidding, drifting.
- Effects of road banking.
- Crashing and tumbling.
Overview

Basic physical quantities

Kinematics for particles

Kinematics for rigid bodies

Force

Game Physics: Mathematics

Units and measures:
- Type-checking for physicists.
- English or metric? Important to keep these straight.

3-dimensional geometry:
- Basic representations: Scalars, points, vectors, matrices, tensors (we won't discuss tensors).
- 3D geometric processing:
 - Linear/affine transformations.
 - Dot and cross product of vectors.
 - Rotation and quaternions (we may discuss this later).

Calculus: Although derivations involve understanding of calculus, most computations just use basic constructs.
- Differential calculus: finite differences.
- Integral calculus: finite summations.
- Differential equations: simulated using small time steps.
Physical Quantities and Units

Basic Quantities:

<table>
<thead>
<tr>
<th>Measure</th>
<th>English</th>
<th>Metric (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>Slug</td>
<td>Kilogram (kg)</td>
</tr>
<tr>
<td>Length</td>
<td>Foot (ft)</td>
<td>Meter (m)</td>
</tr>
<tr>
<td>Time</td>
<td>Second (s)</td>
<td>Second (s)</td>
</tr>
</tbody>
</table>

Examples of Other Quantities:

<table>
<thead>
<tr>
<th>Measure</th>
<th>English</th>
<th>Metric (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>Pound (lb)</td>
<td>Newton (N)</td>
</tr>
<tr>
<td>Pressure</td>
<td>lb/ft²</td>
<td>N/m²</td>
</tr>
<tr>
<td>Velocity</td>
<td>ft/s</td>
<td>m/s</td>
</tr>
</tbody>
</table>

Common Notation and Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Dimensions</th>
<th>English</th>
<th>Metric (SI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>L, s</td>
<td>L</td>
<td>feet (ft)</td>
<td>meters (m)</td>
</tr>
<tr>
<td>Mass</td>
<td>m</td>
<td>M</td>
<td>slug</td>
<td>kilogram (kg)</td>
</tr>
<tr>
<td>Time</td>
<td>T, t</td>
<td>T</td>
<td>seconds (s)</td>
<td>seconds (s)</td>
</tr>
<tr>
<td>Force</td>
<td>F</td>
<td>M(L/T²)</td>
<td>pound (lb)</td>
<td>Newton (N)</td>
</tr>
<tr>
<td>Acceleration, linear</td>
<td>a</td>
<td>L/T²</td>
<td>ft/s²</td>
<td>m/s²</td>
</tr>
<tr>
<td>Acceleration, angular</td>
<td>α</td>
<td>radian/T²</td>
<td>radian/s²</td>
<td>radian/s²</td>
</tr>
<tr>
<td>Moment of inertia</td>
<td>I</td>
<td>ML²</td>
<td>lb-ft-s²</td>
<td>kg-m²</td>
</tr>
<tr>
<td>Moment (torque)</td>
<td>M</td>
<td>M(L²/T²)</td>
<td>ft-lb</td>
<td>N-m</td>
</tr>
<tr>
<td>Density</td>
<td>ρ</td>
<td>M/L³</td>
<td>slug/ft³</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Pressure</td>
<td>P</td>
<td>M/(LT²)</td>
<td>lb/ft²</td>
<td>N/m²</td>
</tr>
<tr>
<td>Velocity, linear</td>
<td>V, v</td>
<td>L/T</td>
<td>ft/s</td>
<td>m/s</td>
</tr>
<tr>
<td>Velocity, angular</td>
<td>ω</td>
<td>radian/T</td>
<td>radian/s</td>
<td>radian/s</td>
</tr>
</tbody>
</table>
Isaac Newton’s Laws of Motion: (circa 1687)

Law I: A body tends to remain at rest or continue to move in a straight line at constant velocity, unless it is acted upon by an external force. (Inertia)

Law II: The acceleration of a body is proportional to the resultant force acting on the body, and this acceleration is in the same direction as the force. \(F = ma \)

Law III: For every force acting on a body (action) there is an equal and oppositely directed reacting force (reaction).

Relevance: Most of game physics involves implementing Newton’s laws.

Rigid Body Physics

Rigid Bodies:
- No moving parts, no hinges, no flexibility.
- Very simple to analyze/model.
- Unlike a point masses, need to consider rotation.
- Complex objects can often be modeled as systems of rigid bodies.

Rigid Body Properties:

Mass: (scalar)
- the amount of matter.
- the degree of resistance to change in motion (inertial mass).

Center of Mass (or gravity): (point/vector)
- central point about which rotations occur.
- need not lie within the body (if the body is nonconvex).

Moment of Inertia: (scalar)
- the resistance to rotational motion about a given axis (scalar form).
Rigid Body Properties: Mass

Mass: Total amount of matter.

Exact: For a volume V of constant density ρ, integrate the density times differential volume elements.

\[
m = \int \rho \, dV = \rho \int dV = (\text{density}) \cdot (\text{volume})
\]

Approximate: In practice, this integral is approximated by the sum of masses of small volume elements that make up a more complex object (can allow variable densities as well):

\[
m \approx \sum \rho_i \cdot v_i
\]

Rigid Body Properties: Center of Mass

Center of Mass: A point (vector) quantity, equals the mean coordinate values weighted by mass. Let $c = (c_x, c_y, c_z)$, where:

Exact: For each axis, integrate the differential mass elements, times its coordinate value.

\[
\begin{align*}
 c_x &= \frac{\int x \, dm}{m} \\
 c_y &= \frac{\int y \, dm}{m} \\
 c_z &= \frac{\int z \, dm}{m}
\end{align*}
\]

Approximate: Sum over small mass elements:

\[
\begin{align*}
 c_x &\approx \frac{\sum x m}{m} \\
 c_y &\approx \frac{\sum y m}{m} \\
 c_z &\approx \frac{\sum z m}{m}
\end{align*}
\]
Rigid Body Properties: Moment of Inertia

Moment of Inertia: For a given center point and rotation axis, represents the resistance to rotation about this point/axis. Let's consider rotation about the origin and the z-axis.

Exact: Integrate the squared distance from each mass element to the z-axis.

\[I_z = \int r_z^2 \, dm = \int (x^2 + y^2) \, dm \]

Approximate: Sum over small mass elements:

\[I_z \approx \sum r_z^2 \, m_i = \sum (x_i^2 + y_i^2) \, m_i \]

Change of Origin: Can we update the moment of inertia if the rotation axis remains the same but the origin changes?

Parallel Axis Theorem: Consider a body of mass m. Let \(I_c \) be the moment of inertia about the body's center of mass (CoM) \(c \), and let \(I_p \) be the moment of inertia for a parallel rotation axis, but about an arbitrary point \(p \) such that the distance \(|pc| \) is \(d \). Then:

\[I_p = I_c + md^2 \]

Corollary: Rotation about the center of mass has the lowest moment of inertia (for any fixed axis of rotation).
Rigid Body Properties: Moment of Inertia

Change of Rotation Axis: Can we update the moment of inertia if the origin remains the same but the rotation axis changes?

Simple Answer: No! The (scalar) moment of inertia does not contain enough information.

Complex Answer: There is a more complex structure, called the inertia tensor, that implicitly stores the moment of inertia with respect to all possible axes. (We won’t discuss it.)

Overview

Basic physical quantities

Kinematics for particles

Kinematics for rigid bodies

Force

Kinematics: Speed and Velocity

Speed and Velocity:

Average Speed: Let \(s \) denote the object’s position and \(t \) denote time. Assuming motion along a line, speed is the change in position \(\Delta s \) over some time interval \(\Delta t \):

\[
v = \frac{\Delta s}{\Delta t}.
\]

Units: Speed is often measured in feet per second (ft/s), miles per hour (mi/h), meters per second (m/s), etc.

Instantaneous speed: If speed varies with time, we need to consider the limit for differential (infinitely small) time intervals:

\[
v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}.
\]

Velocity: Is a vector-valued quantity, whose magnitude is the speed and whose direction indicates the direction of motion.

Kinematics: Acceleration

Acceleration: Change in speed over time.

Average Acceleration: Change in speed \(\Delta v \) over some time \(\Delta t \).

\[
a = \frac{\Delta v}{\Delta t}.
\]

Instantaneous acceleration: If speed varies with time, we need to consider the limit for differential (infinitely small) time intervals:

\[
a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}.
\]

Units: Acceleration is measured in ft/s\(^2\), mi/h\(^2\), m/s\(^2\), etc.

Example: A car goes from 0 to 60 m/h in 4.2 seconds.

The average acceleration in ft/s\(^2\) is:

\[
a = \frac{\Delta v}{\Delta t} = \frac{60 \text{ mi}}{4.2 \text{ s}} \times \frac{1 \text{ hr}}{3600 \text{ s}} \times \frac{5280 \text{ ft}}{1 \text{ mi}} = \frac{60 \times 5280}{4.2 \times 3600} \approx 21 \text{ ft/s}^2.
\]
Kinematics: Relationships

Relating Position, Velocity, and Acceleration:

Position and Velocity: By definition, \(v(t) = \frac{ds}{dt} \). Suppose that an object moves from position \(s_0 \) to \(s_1 \) during the time period \(t_0 \) to \(t_1 \). We have:

\[
\int_{s_0}^{s_1} ds = \int_{t_0}^{t_1} v(t) \, dt \\
\Delta s = s_1 - s_0 = \int_{t_0}^{t_1} v(t) \, dt
\]

We sometimes drop the parameter \(t \) and just write \(\Delta s \) here.

Velocity and Acceleration: By similar argument we have:

\[\Delta v = v_1 - v_0 = \int_{t_0}^{t_1} a(t) \, dt \]

All three: We also have:

\[
a = \frac{dv}{dt} = \frac{d^2s}{dt^2} \quad \text{and} \quad v(t) \, dv = a(t) \, ds
\]

Example: Constant Acceleration

Constant Acceleration: What is the position, as a function of time, of an object moving with constant acceleration \(a \)?

Start: At time \(t = 0 \) the object is at position \(s_0 \) with velocity \(v_0 \).

Question: At time \(t \geq 0 \), what is the object's position, \(s(t) \)?

Analysis: We observed earlier that:

\[\Delta v = v_1 - v_0 = \int_{0}^{t} a \, dt \]

that is \(v(t) - v_0 = \int_{0}^{t} a \, dt \)

Since acceleration is constant this yields\(v(t) = v_0 + at \) Using the fact that \(v(t) \, dt = ds \), we have:

\[
\int_{s_0}^{s(t)} ds = \int_{0}^{t} v(t) \, dt = \int_{0}^{t} (v_0 + at) \, dt \\
s(t) - s_0 = \left[v_0 t + \frac{at^2}{2} \right]_{0}^{t} = v_0 t + \frac{at^2}{2} \\
s(t) = s_0 + v_0 t + \frac{at^2}{2}
\]

Now I remember why I hate physics.
Overview

Basic physical quantities

Kinematics for particles

Kinematics for rigid bodies

Force

Angular Velocity

Rigid Body Rotation:
- So far we have only discussed translation, which would be fine if all objects were treated as particles (point-mass).
- For a complete understanding, we must consider rotation.
- Rotation occurs about:
 - the object's center of mass and
 - some axis of rotation (which may change depending on forces).

Plane Kinematics:
- All rotation occurs about a fixed axis of rotation in 3-space (i.e., on a plane orthogonal to that axis).
- Good enough for many 2½-dimensional games (e.g., Mario Bros).

General Kinematics:
- 3D rotation: Euler angles and quaternions.
Plane Kinematics: Object State

Local Coordinate Frame:
- We select a coordinate frame so that the z-axis is aligned with the axis of rotation.

Object Orientation: To specify an object’s location in space:
- Location of its center of mass: (x, y, z) coordinates in local frame.
- Current angle of rotation \(\Omega \) relative to the z-axis.

Plane Kinematics: Angular Velocity & Acceleration

Each of the principal quantities for translational motion has its counterpart in angular motion.

<table>
<thead>
<tr>
<th>Translational Motion</th>
<th>Angular Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>Symbol</td>
</tr>
<tr>
<td>Position</td>
<td>s</td>
</tr>
<tr>
<td>Velocity</td>
<td>v</td>
</tr>
<tr>
<td>Acceleration</td>
<td>a</td>
</tr>
</tbody>
</table>
Plane Kinematics: Angular Velocity & Acceleration

Definitions and Relations

<table>
<thead>
<tr>
<th>Translational motion</th>
<th>Angular motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v = \frac{ds}{dt})</td>
<td>(\omega = \frac{d\Omega}{dt})</td>
</tr>
<tr>
<td>(a = \frac{dv}{dt} = \frac{d^2s}{dt^2})</td>
<td>(\alpha = \frac{d\omega}{dt} = \frac{d^2\Omega}{dt^2})</td>
</tr>
<tr>
<td>(s = \int v , dt)</td>
<td>(\Omega = \int \omega , dt)</td>
</tr>
<tr>
<td>(v = \int a , dt)</td>
<td>(\omega = \int \alpha , dt)</td>
</tr>
<tr>
<td>(v , dv = a , ds)</td>
<td>(\omega , d\omega = \alpha , d\Omega)</td>
</tr>
</tbody>
</table>

Constant Acceleration Formulas

<table>
<thead>
<tr>
<th>Translational motion</th>
<th>Angular motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(t) = v_0 + a \cdot t)</td>
<td>(\omega(t) = \omega_0 + \alpha \cdot t)</td>
</tr>
<tr>
<td>(s(t) = s_0 + v_0 \cdot t + \frac{a \cdot t^2}{2})</td>
<td>(\Omega(t) = \Omega_0 + \omega_0 \cdot t + \frac{\alpha \cdot t^2}{2})</td>
</tr>
</tbody>
</table>

Overview

- Basic physical quantities
- Kinematics for particles
- Kinematics for rigid bodies
 - Force
Force

Kinematics:
- The study of motion in the absence of force.

Kinetics:
- How do we integrate forces with mass to determine motion?

Force Basics:
- Contact force: from impact, friction, buoyancy, pressure.
- Field force: from gravity and electromagnetism.
- Newton's Third Law: Forces come in pairs (action and reaction). We will usually compute just one, and the other is its negation.

Examples:
- Springs - useful for handling collisions.
- Friction - braking, skidding, sliding.
- Dampers - motion resistors
- Buoyancy - floating

Springs

Springs:
- Elements (usually particles) joined by elastic structures, called springs.
- Springs assumed to follow Hooke's Law (given below).
- Complex mass-spring systems can be used to model complex objects, such as cloth.
Springs

Hooke's Law: for an ideal (linear) spring.
- Let \(p_1 \) and \(p_2 \) be two particles connected by a spring.
- Let \(L = \| p_1 - p_2 \| \) be the distance between \(p_1 \) and \(p_2 \).
- Let \(u \) = unit length directional vector from \(p_1 \) to \(p_2 \).
- Then the spring force is (vector quantity):
 \[F_{\text{spring}} = k (L - L_{\text{rest}}) u, \]
 where:
 - \(L_{\text{rest}} \) = the length of the spring at rest, and
 - \(k \) = spring constant. (Units: force/length, e.g. lb/ft or Newton/m.)

Application:
- \(F_{\text{spring}} \) is applied to \(p_1 \).
- \(-F_{\text{spring}}\) is applied to \(p_2 \).
- \(L < L_{\text{rest}} \): repels the points.
- \(L > L_{\text{rest}} \): attracts the points.

Friction

Friction:
- Friction is a contact force.
- It is directed tangential to the plane of contact.
- It resists force (in the static case) or velocity (in the dynamic case).
- It is a complex phenomenon, which is modeled by Coulomb friction.
Coulomb Friction

Coulomb Friction:
- Consider two objects \(o_1 \) and \(o_2 \) in contact.
- Let \(\mathbf{n} \) be the unit length normal vector to the contact plane.
- Suppose that \(o_1 \) moves at tangential velocity \(\mathbf{v}_t \) relative to \(o_2 \).
- What is the force on \(o_1 \) due to friction? (The force on \(o_2 \) will be the negation of this.)

\[F_{\text{app}} = F_n + F_t \]

Coulomb Friction

Coulomb Friction:
- Suppose that a force \(F_{\text{app}} \) is applied to \(o_1 \). (This includes gravity, but does not include friction.)
- We can decompose the vector \(F_{\text{app}} \) into two components, one parallel to \(\mathbf{n} \) \((F_n) \) and one orthogonal \((F_t) \):
 \[F_n = (F_{\text{app}} \cdot \mathbf{n}) \mathbf{n} \]
 \[F_t = F_{\text{app}} - F_n \]
- We will compute the force due to friction \(F_{\text{frict}} \), and the final net force will be:
 \[F_{\text{net}} = F_{\text{app}} + F_{\text{frict}} \]
- We consider two cases, depending on whether \(o_1 \) is moving.
Coulomb Friction: Static Case

Static Case: If \(v_t = 0 \):
- Let \(\mu_s \) be the **static coefficient of friction**. (No units.)
- **Friction force** is given by:
 \[
 F_{\text{frict}} = -\frac{F_t}{|F_t|} \min(\mu_s |F_n|, |F_t|).
 \]

 Case 1: if \(|F_t| \leq \mu_s |F_n|\), then \(F_{\text{frict}} = -F_t \), implying that the net motion is 0. Object \(o_1 \) **does not move**.

 Case 2: if \(|F_t| > \mu_s |F_n|\), then \(|F_{\text{frict}}| < |F_t| \), implying that there will be a **nonzero net tangential force** of \(F_t + F_{\text{frict}} \), and thus the object will start to move in the direction of \(F_t \).

Coulomb Friction: Dynamic Case

Dynamic Case: If \(v_t \neq 0 \):
- Let \(\mu_d \) be the **dynamic coefficient of friction**. (No units.)
- **Friction force** is given by:
 \[
 F_{\text{frict}} = -\frac{V}{|V|} \mu_d |F_n|.
 \]

 - **Note:** This is negative and tends to **decrease tangential velocity**.
 - This is true irrespective of the direction of \(F_t \).

Final Net Force:
- \(F_{\text{net}} = F_{\text{app}} + F_{\text{frict}} \).
Summary

Summary:
- **Basic physical concepts**: Mass, center of mass, moment of inertia.
- **Kinematics for particles**: Position, velocity, acceleration.
- **Kinematics for rigid bodies**: Orientation, angular velocity, angular acceleration.
- **Simple forces**: Springs and friction.