CMSC 631 — Program Analysis and Understanding
Fall 2007

Data Flow Analysis
Compiler Structure

- Source code parsed to produce AST

- AST transformed to CFG

- Data flow analysis operates on control flow graph (and other intermediate representations)
Control-Flow Graph (CFG)

- A directed graph where
 - Each node represents a statement
 - Edges represent control flow

- Statements may be
 - Assignments $x := y \text{ op } z$ or $x := \text{ op } z$
 - Copy statements $x := y$
 - Branches $\text{goto} \ L$ or $\text{if } x \ \text{relop} \ y \ \text{goto} \ L$
 - etc.
Control-Flow Graph Example

- $x := a + b$
- $y := a \times b$
- while ($y > a$) {
 - $a := a + 1$
 - $x := a + b$
- }
Variations on CFGs

- Usually don’t include declarations (e.g., int x;)
 - But there’s usually something in the implementation

- Useful to have a unique entry and exit node
 - Treat them differently during dataflow analysis

- May group statements into basic blocks
 - A sequence of instructions with no branches into or out of the block
Control-Flow Graph w/Basic Blocks

- Can lead to more efficient implementations
- But more complicated to explain, so...
 - We’ll use single-statement blocks in lecture today

```plaintext
x := a + b;
y := a * b;
while (y > a + b) {
    a := a + 1;
    x := a + b
}
```
Graph Example with Entry and Exit

- $x := a + b$
- $y := a \times b$
- while $(y > a)$ {
 - $a := a + 1$
 - $x := a + b$
- }

- All nodes without a (normal) predecessor should be pointed to by entry
- All nodes without a successor should point to exit
CFG vs. AST

• CFGs are much simpler than ASTs
 ▪ Fewer forms, less redundancy, simple expressions

• But...AST is a more faithful representation
 ▪ CFGs introduce temporaries
 ▪ Lose block structure of program

• So for AST,
 ▪ Easier to report error + other messages
 ▪ Easier to explain to programmer
 ▪ Easier to unparses to produce readable code
Data Flow Analysis

- A framework for proving facts about programs
- Reasons about lots of little facts
- Little or no interaction between facts
 - Works best on properties about how program computes
- Based on all paths through program
 - Including infeasible paths
Available Expressions
Available Expressions

• Expression e is *available* at program point p if
 - e is computed on every path to p, and
 - the value of e has not changed since the last time e is computed on p

• Optimization
 - If an expression is available, need not be recomputed
 - (At least, if it’s still in a register somewhere)
Data Flow Facts

- Is expression \(e \) available?
- Facts:
 - \(a + b \) is available
 - \(a \times b \) is available
 - \(a + 1 \) is available
Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a + b</td>
<td>a + b, a + b, a * b</td>
</tr>
<tr>
<td>y := a * b</td>
<td>a * b</td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- **entry**
 - x := a + b
 - y := a * b
 - y > a
 - a := a + 1
 - x := a + b
- **exit**
Computing Available Expressions

entry

\[x := a + b \]

\[y := a \times b \]

\[y > a \]

\[a := a + 1 \]

\[x := a + b \]
Computing Available Expressions

entry

∅

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

\[
\emptyset
\]

\[
\{a + b\}
\]

entry

\[
x := a + b
\]

\[
y := a \times b
\]

\[
y > a
\]

\[
a := a + 1
\]

\[
x := a + b
\]

exit
Computing Available Expressions

entry

∅

{a + b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

\[
\emptyset \\
\{a + b\} \\
\{a + b, a * b\}
\]
Computing Available Expressions

\emptyset

\{a + b\}

\{a + b, a \times b\}

$y > a$

$a := a + 1$

$x := a + b$
Computing Available Expressions

\[
\emptyset \\
\{a + b\} \\
\{a + b, a \times b\} \\
\{a + b, a \times b\} \\
\]

- \(x := a + b \)
- \(y := a \times b \)
- \(y > a \)
- \(a := a + 1 \)
- \(x := a + b \)
Computing Available Expressions

entry

∅

{x := a + b}

{a + b, a * b}

{y := a * b}

{y > a}

{a + b, a * b}

{a := a + 1}

{a + b, a * b}

x := a + b

exit
Computing Available Expressions

entry

∅

{x := a + b}

{a + b}

{a + b, a * b}

{a + b, a * b}

∅

x := a + b

y := a * b

y > a

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

\[\emptyset \]

\[\{a + b\} \]

\[\{a + b, a \ast b\} \]

\[\{a + b, a \ast b\} \]

\[\emptyset \]

entry

\[x := a + b \]

\[y := a \ast b \]

\[y > a \]

\[a := a + 1 \]

\[x := a + b \]

exit
Computing Available Expressions

\(\emptyset \)

\(\{a + b\} \)

\(\{a + b, a \times b\} \)

\(\{a + b, a \times b\} \)

\(\emptyset \)

\(\{a + b\} \)
Computing Available Expressions

\[\emptyset \]

\[\{a + b\} \]

\[\{a + b, a \times b\} \]

\[\{a + b, a \times b\} \]

\[\emptyset \]

\[\{a + b\} \]
Computing Available Expressions

\[
\begin{align*}
\emptyset & \\
\{a + b\} & \\
\{a + b, a \times b\} & \\
\{a + b, a \times b\} & \\
\emptyset & \\
\{a + b\} & \\
\end{align*}
\]
Computing Available Expressions

entry

∅

{x := a + b}

{a + b}

{a + b, a * b}

∅

{a + b}

x := a + b

y := a * b

y > a

a := a + 1

x := a + b

exit
Computing Available Expressions

\[
\begin{align*}
\emptyset & \quad \rightarrow \\
\{a + b\} & \quad \rightarrow \\
\{a + b, a \ast b\} & \quad \rightarrow \\
\emptyset & \quad \rightarrow \\
\{a + b\} & \quad \rightarrow \\
\{a + b\} & \quad \rightarrow
\end{align*}
\]
Computing Available Expressions

- \{a + b\}
- \{a + b, a * b\}
- \{a + b\}

Flowchart:

- Entry
- \(x := a + b\)
- \(y := a * b\)
- \(y > a\)
- \(a := a + 1\)
- Exit

Expressions:
- \(\emptyset\)
- \(\{a + b\}\)
Computing Available Expressions

- $x := a + b$
- $y := a \times b$
- $y > a$
- $a := a + 1$
- $x := a + b$

Diagram representation:

- Entry: \emptyset
- $x := a + b$ with available expressions $\{a + b\}$
- $y := a \times b$ with available expressions $\{a + b, a \times b\}$
- $y > a$ with available expressions $\{a + b\}$
- $a := a + 1$ with available expressions $\{a + b\}$
- Exit: \emptyset, available expressions $\{a + b\}$
Terminology

• A join point is a program point where two branches meet

• Available expressions is a forward must problem
 - Forward = Data flow from in to out
 - Must = At join point, property must hold on all paths that are joined
Data Flow Equations

• Let \(s \) be a statement

 - \(\text{succ}(s) = \{ \text{immediate successor statements of } s \} \)
 - \(\text{pred}(s) = \{ \text{immediate predecessor statements of } s \} \)
 - \(\text{In}(s) = \text{program point just before executing } s \)
 - \(\text{Out}(s) = \text{program point just after executing } s \)

• \(\text{In}(s) = \bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \)

• \(\text{Out}(s) = \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s)) \)

• These are also called transfer functions
Liveness Analysis
Liveness Analysis

• A variable v is live at program point p if
 - v will be used on some execution path originating from p...
 - before v is overwritten

• Optimization
 - If a variable is not live, no need to keep it in a register
 - If variable is dead at assignment, can eliminate assignment
Data Flow Equations

• Available expressions is a forward must analysis
 ▪ Data flow propagate in same dir as CFG edges
 ▪ Expr is available only if available on all paths

• Liveness is a *backward may* problem
 ▪ To know if variable live, need to look at future uses
 ▪ Variable is live if used on some path

\[\text{Out}(s) = \bigcup_{s' \in \text{succ}(s)} \text{In}(s') \]

\[\text{In}(s) = \text{Gen}(s) \cup (\text{Out}(s) - \text{Kill}(s)) \]
Gen and Kill

- What is the effect of each statement on the set of facts?

<table>
<thead>
<tr>
<th>Stmt</th>
<th>Gen</th>
<th>Kill</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := a + b</td>
<td>a, b</td>
<td>x</td>
</tr>
<tr>
<td>y := a * b</td>
<td>a, b</td>
<td>y</td>
</tr>
<tr>
<td>y > a</td>
<td>a, y</td>
<td></td>
</tr>
<tr>
<td>a := a + 1</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>
Computing Live Variables

\[x := a + b \]
\[y := a \times b \]
\[y > a \]
\[a := a + 1 \]
\[x := a + b \]
Computing Live Variables

\[
x := a + b
\]

\[
y := a \ast b
\]

\[
y > a
\]

\[
a := a + 1
\]

\[
x := a + b
\]

\{x\}
Computing Live Variables

\[
\begin{align*}
x &:= a + b \\
y &:= a \times b \\
y > a \\
a &:= a + 1 \\
x &:= a + b
\end{align*}
\]
Computing Live Variables

\[
x := a + b \\
y := a \times b \\
y > a \\
a := a + 1 \\
x := a + b
\]
Computing Live Variables

\[x := a + b \]
\[y := a \times b \]
\[y > a \]
\[a := a + 1 \]
\[x := a + b \]
Computing Live Variables

x := a + b

y := a * b

y > a

a := a + 1

x := a + b
Computing Live Variables

\[x := a + b \]
\[y := a \cdot b \]
\[y > a \]
\[a := a + 1 \]
\[x := a + b \]
Computing Live Variables

\[
\begin{align*}
x &:= a + b \\
y &:= a \times b \\
y > a \\
a &:= a + 1 \\
x &:= a + b
\end{align*}
\]
Computing Live Variables

\[
\begin{align*}
\text{x} & := a + b \\
\text{y} & := a \times b \\
\text{y} > a \\
a & := a + 1 \\
\text{x} & := a + b
\end{align*}
\]
Computing Live Variables

```
x := a + b
y := a * b
y > a
a := a + 1
x := a + b
```
Computing Live Variables

\begin{verbatim}
x := a + b
y := a * b
y > a
a := a + 1
x := a + b
\end{verbatim}
Computing Live Variables

\{a, b\} → x := a + b

\{x, a, b\} → y := a \times b

\{x, y, a, b\} → y > a

\{y, a, b\} → a := a + 1

\{y, a, b\} → x := a + b

\{x, y, a, b\} → \{x, y, a, b\}
Very Busy Expressions

• An expression e is very busy at point p if
 ▪ On every path from p, expression e is used before any component of e is changed

• Optimization
 ▪ Can hoist very busy expression computation to p

• What kind of problem?
 ▪ Forward or backward?
 ▪ May or must?
Very Busy Expressions

• An expression e is very busy at point p if
 - On every path from p, expression e is used before any component of e is changed

• Optimization
 - Can hoist very busy expression computation to p

• What kind of problem?
 - Forward or backward? **backward**
 - May or must?
Very Busy Expressions

• An expression e is very busy at point p if
 • On every path from p, expression e is used before any component of e is changed

• Optimization
 • Can hoist very busy expression computation to p

• What kind of problem?
 • Forward or backward? backward
 • May or must? must
Reaching Definitions

• A definition of a variable \(v \) is an assignment to \(v \)
• A definition of variable \(v \) reaches point \(p \) if
 ▪ There is no intervening assignment to \(v \)

• Also called def-use information

• What kind of problem?
 ▪ Forward or backward?
 ▪ May or must?
Reaching Definitions

- A definition of a variable v is an assignment to v.
- A definition of variable v reaches point p if
 - There is no intervening assignment to v.

Also called def-use information.

What kind of problem?
- Forward or backward? forward
- May or must?
Reaching Definitions

• A definition of a variable \(v \) is an assignment to \(v \)

• A definition of variable \(v \) reaches point \(p \) if
 • There is no intervening assignment to \(v \)

• Also called def-use information

• What kind of problem?
 • Forward or backward? \(\text{forward} \)
 • May or must? \(\text{may} \)
Space of Data Flow Analyses

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Backward</td>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
</tbody>
</table>

- Most data flow analyses can be classified this way
 - A few don’t fit: bidirectional analysis
- Lots of literature on data flow analysis
Data Flow Facts and Lattices

- Typically, data flow facts form a lattice
 - Example: Available expressions

```
(a+b, a*b, a+1)

(a+b, a*b)  (a*b, a+1)  (a+b, a+1)

(a+b)

(a*b)  (a+1)

(none)
```

Diagram:
```
    a+b, a*b, a+1
     /         \
   /           \   \-
  /             \   
(a+b, a*b)  (a*b, a+1)  (a+b, a+1)
         /       \        \-
        /         \       
  (a+b)  (a*b)  (a+1)  (none)
```

"top" "bottom"
Partial Orders

• A partial order is a pair \((P, \leq)\) such that

 - \(\leq \subseteq P \times P\)
 - \(\leq\) is reflexive: \(x \leq x\)
 - \(\leq\) is anti-symmetric: \(x \leq y\) and \(y \leq x\) \(\Rightarrow x = y\)
 - \(\leq\) is transitive: \(x \leq y\) and \(y \leq z\) \(\Rightarrow x \leq z\)
Meet and Join Operations

• □ is the \textit{meet} or \textit{greatest lower bound} operation:
 - \(x \sqcap y \leq x \) and \(x \sqcap y \leq y \)
 - if \(z \leq x \) and \(z \leq y \), then \(z \leq x \sqcap y \)

• \(\sqcup \) is the \textit{join} or \textit{least upper bound} operation:
 - \(x \leq x \sqcup y \) and \(y \leq x \sqcup y \)
 - if \(x \leq z \) and \(y \leq z \), then \(x \sqcup y \leq z \)
Lattices

• A partial order \((P, \leq)\) is a lattice if meet and join exist for every pair of elements in \(P\).

• A lattice has unique elements \(\bot\) and \(\top\) such that

\[
\begin{align*}
 x \land \bot &= \bot & x \lor \bot &= x \\
 x \land \top &= x & x \lor \top &= \top
\end{align*}
\]

• In a lattice, \(x \leq y \iff x \land y = x\), \(x \leq y \iff x \lor y = y\).

• A partial order is a complete lattice if meet and join are defined on any set \(S \subseteq P\).
Useful Lattices

• $(2^S, \subseteq)$ forms a lattice for any set S
 ▪ 2^S is the powerset of S (set of all subsets)

• If (S, \leq) is a lattice, so is (S, \geq)
 ▪ I.e., lattices can be flipped

• The lattice for constant propagation
Forward Must Data Flow Algorithm
Forward Must Data Flow Algorithm

- \(\text{Out}(s) = \text{Top} \) for all statements \(s \)
Forward Must Data Flow Algorithm

• Out(s) = Top for all statements s
 ▪ // Slight acceleration: Could set Out(s) = Gen(s) U (Top - Kill(s))
Forward Must Data Flow Algorithm

• Out(s) = Top for all statements s
 ▪ // Slight acceleration: Could set Out(s) = Gen(s) \(\cup \) (Top - Kill(s))
 ▪ May need to initialize Out(entry) specially
Forward Must Data Flow Algorithm

- \(\text{Out}(s) = \text{Top} \) for all statements \(s \)
 - // Slight acceleration: Could set \(\text{Out}(s) = \text{Gen}(s) \cup (\text{Top} - \text{Kill}(s)) \)
 - May need to initialize \(\text{Out}(\text{entry}) \) specially

- \(W := \{ \text{all statements} \} \) (worklist)
Forward Must Data Flow Algorithm

- \(\text{Out}(s) = \text{Top} \) for all statements \(s \)
 - // Slight acceleration: Could set \(\text{Out}(s) = \text{Gen}(s) \cup (\text{Top} - \text{Kill}(s)) \)
 - May need to initialize \(\text{Out}(\text{entry}) \) specially

- \(W := \{ \text{all statements} \} \) (worklist)
- repeat
Forward Must Data Flow Algorithm

• Out(s) = Top for all statements s
 ▪ // Slight acceleration: Could set Out(s) = Gen(s) \cup (Top - Kill(s))
 ▪ May need to initialize Out(entry) specially

• W := \{ all statements \} (worklist)

• repeat
 ▪ Take s from W
Forward Must Data Flow Algorithm

• Out(s) = Top for all statements s
 ▪ // Slight acceleration: Could set Out(s) = Gen(s) ∪ (Top - Kill(s))
 ▪ May need to initialize Out(entry) specially

• W := \{ all statements \} (worklist)

• repeat
 ▪ Take s from W
 • \[\text{ln}(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \]
Forward Must Data Flow Algorithm

- \(\text{Out}(s) = \text{Top} \) for all statements \(s \)
 - // Slight acceleration: Could set \(\text{Out}(s) = \text{Gen}(s) \cup (\text{Top} - \text{Kill}(s)) \)
 - May need to initialize \(\text{Out}(\text{entry}) \) specially

- \(W := \{ \text{all statements} \} \) \hspace{1cm} (worklist)

- repeat
 - Take \(s \) from \(W \)
 - \(\text{In}(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \)
Forward Must Data Flow Algorithm

- \(\text{Out}(s) = \text{Top} \) for all statements \(s \)
 - // Slight acceleration: Could set \(\text{Out}(s) = \text{Gen}(s) \cup (\text{Top} - \text{Kill}(s)) \)
 - May need to initialize \(\text{Out}(\text{entry}) \) specially

- \(W := \{ \text{all statements} \} \) (worklist)

- \text{repeat}
 - \text{Take } s \text{ from } W
 - \(\text{In}(s) := \cap_{s' \in \text{pred}(s)} \text{Out}(s') \)
 - \(\text{temp} := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s)) \)
Forward Must Data Flow Algorithm

- Out(s) = Top for all statements s
 - // Slight acceleration: Could set Out(s) = Gen(s) ⋃ (Top - Kill(s))
 - May need to initialize Out(entry) specially

- W := \{ all statements \} (worklist)

- repeat
 - Take s from W
 - In(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')
 - temp := Gen(s) ⋃ (In(s) - Kill(s))
 - if (temp \neq Out(s)) {

Forward Must Data Flow Algorithm

• $\text{Out}(s) = \text{Top}$ for all statements s
 - // Slight acceleration: Could set $\text{Out}(s) = \text{Gen}(s) \cup (\text{Top} - \text{Kill}(s))$
 - May need to initialize $\text{Out}(\text{entry})$ specially

• $W := \{ \text{all statements} \}$ (worklist)

• repeat
 - Take s from W
 - $\text{In}(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')$
 - temp := $\text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))$
 - if (temp \neq Out(s)) {
 - Out(s) := temp
 }
Forward Must Data Flow Algorithm

• Out(s) = Top for all statements s
 ▪ // Slight acceleration: Could set Out(s) = Gen(s) ∪ (Top - Kill(s))
 ▪ May need to initialize Out(entry) specially

• W := { all statements } (worklist)

• repeat
 ▪ Take s from W
 ▪ In(s) := ⋂_{s' ∈ pred(s)} Out(s')
 ▪ temp := Gen(s) ∪ (In(s) - Kill(s))
 ▪ if (temp != Out(s)) {
 - Out(s) := temp
 - W := W ∪ succ(s)
Forward Must Data Flow Algorithm

• Out(s) = Top for all statements s
 - // Slight acceleration: Could set Out(s) = Gen(s) ∪ (Top - Kill(s))
 - May need to initialize Out(entry) specially

• W := \{ all statements \} (worklist)

• repeat
 - Take s from W
 - In(s) := \bigcap_{s' ∈ \text{pred}(s)} \text{Out}(s)
 - temp := Gen(s) ∪ (In(s) - Kill(s))
 - if (temp ≠ Out(s)) {
 - Out(s) := temp
 - W := W ∪ succ(s)
 }

Forward Must Data Flow Algorithm

- Out(s) = Top for all statements s
 - // Slight acceleration: Could set Out(s) = Gen(s) ∪ (Top - Kill(s))
 - May need to initialize Out(entry) specially

- W := { all statements } (worklist)

repeat
 - Take s from W
 - \(In(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \)
 - temp := Gen(s) ∪ (\(\text{In}(s) - \text{Kill}(s) \))
 - if (temp \(\neq \) Out(s)) {
 - Out(s) := temp
 - W := W ∪ \text{succ}(s)
 }

- until W = ∅
Monotonicity

• A function f on a partial order is *monotonic* if

$$x \leq y \Rightarrow f(x) \leq f(y)$$

• Easy to check that operations to compute In and Out are monotonic

 - $\text{In}(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')$
 - $\text{Out}(s) := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))$

• Putting these two together

 $f\left(\bigcap_{s' \in \text{pred}(s)} \text{Out}(s')\right)$

• $\text{Out}(s) := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))$
Monotonicity

• A function f on a partial order is *monotonic* if

\[x \leq y \Rightarrow f(x) \leq f(y) \]

• Easy to check that operations to compute In and Out are monotonic

 - $\text{In}(s) := \bigcap_{s' \in \text{pred}(s)} \text{Out}(s')$
 - $\text{Out}(s) := \text{Gen}(s) \cup (\text{In}(s) - \text{Kill}(s))$

• Putting these two together
 - $\text{Out}(s) := f_s(\text{In}(s))$
Termination

- We know the algorithm terminates because
 - The lattice has finite height
 - The operations to compute In and Out are monotonic
 - On every iteration, we remove a statement from the worklist and/or move down the lattice
Forward Data Flow, Again

- \(\text{Out}(s) = \text{Top} \) for all statements \(s \)
- \(W := \{ \text{all statements} \} \) (worklist)

- repeat
 - Take \(s \) from \(W \)
 - \(\text{temp} := f_s \left(\bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \right) \) (f monotonic transfer fn)
 - if (temp \(!=\) Out(s)) {
 - Out(s) := temp
 - W := W \cup \text{succ}(s)
 }
 - until \(W = \emptyset \)
Lattices \((P, \leq)\)
Lattices \((P, \leq)\)

- Available expressions
Lattices \((P, \leq)\)

- Available expressions
 - \(P = \text{sets of expressions}\)
Lattices \((P, \leq)\)

- Available expressions
 - \(P = \) sets of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
Lattices \((P, \leq)\)

- Available expressions
 - \(P = \text{sets of expressions}\)
 - \(S_1 \sqcap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \text{set of all expressions}\)
Lattices \((P, \leq)\)

- Available expressions
 - \(P = \) sets of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \) set of all expressions

- Reaching Definitions
Lattices \((P, \leq)\)

- **Available expressions**
 - \(P = \) sets of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \) set of all expressions

- **Reaching Definitions**
 - \(P = \) set of definitions (assignment statements)
Lattices \((P, \leq)\)

- **Available expressions**
 - \(P = \) sets of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \) set of all expressions

- **Reaching Definitions**
 - \(P = \) set of definitions (assignment statements)
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
Lattices \((P, \leq)\)

- **Available expressions**
 - \(P = \) sets of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \) set of all expressions

- **Reaching Definitions**
 - \(P = \) set of definitions (assignment statements)
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \) empty set
Fixpoints

• We always start with Top
 ▪ Most optimistic assumption
 – “every expression is available,” “no defns reach this point”
 ▪ Strongest possible hypothesis
 – = true of fewest number of states

• Revise as we encounter contradictions
 ▪ Always move down in the lattice (with meet)

• Result: A greatest fixpoint
Lattices \((P, \leq)\), cont’d
Lattices \((P, \leq), \text{ cont’d}\)

- Live variables
Lattices \((P, \leq)\), cont’d

• Live variables
 - \(P = \) sets of variables
Lattices \((P, \leq)\), cont’d

- Live variables
 - \(P = \) sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
Lattices \((P, \leq)\), cont’d

• Live variables

 ▪ \(P = \) sets of variables

 ▪ \(S_1 \cap S_2 = S_1 \cup S_2\)

 ▪ \(\text{Top} = \) empty set
Lattices \((P, \leq)\), cont’d

• Live variables
 - \(P = \) sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - Top = empty set

• Very busy expressions
Lattices \((P, \leq)\), cont’d

• Live variables
 - \(P\) = sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \text{empty set}\)

• Very busy expressions
 - \(P\) = set of expressions
Lattices \((P, \leq)\), cont’d

- **Live variables**
 - \(P = \) sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \) empty set

- **Very busy expressions**
 - \(P = \) set of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
Lattices \((P, \leq)\), cont’d

- Live variables
 - \(P\) = sets of variables
 - \(S_1 \cap S_2 = S_1 \cup S_2\)
 - \(\text{Top} = \text{empty set}\)

- Very busy expressions
 - \(P\) = set of expressions
 - \(S_1 \cap S_2 = S_1 \cap S_2\)
 - \(\text{Top} = \text{set of all expressions}\)
Forward vs. Backward

\(\text{Out}(s) = \text{Top} \text{ for all } s \)

\(W := \{ \text{all statements} \} \)

repeat

Take \(s \) from \(W \)

\(\text{temp} := f (\cap_{s' \in \text{pred}(s)} \text{Out}(s')) \)

if (\(\text{temp} \neq \text{Out}(s) \)) {

\(\text{Out}(s) := \text{temp} \)

\(W := W \cup \text{succ}(s) \)

}

until \(W = \emptyset \)

\(\text{In}(s) = \text{Top} \text{ for all } s \) (\(\text{In}(\text{exit}) \text{ special} \))

\(W := \{ \text{all statements} \} \)

repeat

Take \(s \) from \(W \)

\(\text{temp} := f (\cap_{s' \in \text{succ}(s)} \text{In}(s')) \)

if (\(\text{temp} \neq \text{In}(s) \)) {

\(\text{In}(s) := \text{temp} \)

\(W := W \cup \text{pred}(s) \)

}

until \(W = \emptyset \)
Termination Revisited

• How many times can we apply this step:

 1. \(\text{temp} := f(\bigcap_{s' \in \text{pred}(s)} \text{Out}(s')) \)

 if (temp != Out(s)) { ... }

 • Claim: \(\text{Out}(s) \) only “shrinks”

 – Proof: \(\text{Out}(s) \) starts out as top

 – So \(\text{temp} \leq \text{Top} \) after first step

 – Assume \(\text{Out}(s') \) shrinks for all predecessors \(s' \) of \(s \)

 Then \(\bigcap_{s' \in \text{pred}(s)} \text{Out}(s') \) shrinks

 – Since \(f \) is monotonic, \(f(\bigcap_{s' \in \text{pred}(s)} \text{Out}(s')) \) shrinks
Termi
tation Revisited (cont’d)

• A descending chain in a lattice is a sequence
 ▪ \(x_0 > x_1 > x_2 > \ldots \)

• The height of a lattice is the length of the longest descending chain in the lattice

• Then, dataflow must terminate in \(O(nk) \) time
 ▪ \(n \) = # of statements in program
 ▪ \(k \) = height of lattice
 ▪ assumes meet operation takes \(O(1) \) time
Least vs. Greatest Fixpoints

- **Dataflow tradition:** Start with Top, use meet
 - To do this, we need a complete meet semilattice with top, of finite height
 - complete meet semilattice = meets defined for any set
 - finite height ensures termination
 - Computes greatest fixpoint

- **Denotational semantics tradition:** Start with Bottom, use join
 - Computes least fixpoint
Distributive Data Flow Problems

• By monotonicity, we also have

\[f(x \cap y) \leq f(x) \cap f(y) \]

• A function \(f \) is distributive if

\[f(x \cap y) = f(x) \cap f(y) \]
Benefit of Distributivity

• Joins lose no information

\[k(h(f(\top) \cap g(\top))) = k(h(f(\top)) \cap h(g(\top))) = k(h(f(\top))) \cap k(h(g(\top))) \]
Accuracy of Data Flow Analysis

- Ideally, we would like to compute the meet over all paths (MOP) solution:
 - Let f_s be the transfer function for statement s
 - If p is a path $\{s_1, ..., s_n\}$, let $f_p = f_n; ...; f_1$
 - Let $\text{path}(s)$ be the set of paths from the entry to s

$$\text{MOP}(s) = \bigcap_{p \in \text{path}(s)} f_p(\top)$$

- If a data flow problem is distributive, then solving the data flow equations in the standard way yields the MOP solution
What Problems are Distributive?

• Analyses of *how* the program computes
 ▪ Live variables
 ▪ Available expressions
 ▪ Reaching definitions
 ▪ Very busy expressions

• All Gen/Kill problems are distributive
A Non-Distributive Example

• Constant propagation

\[
\begin{align*}
&x := 1 \\
y := 2 \\
z := x + y
&x := 2 \\
y := 1
\end{align*}
\]

• In general, analysis of *what* the program computes is not distributive
Practical Implementation

• Data flow facts = assertions that are true or false at a program point

• Represent set of facts as bit vector
 ■ Fact represented by bit i
 ■ Intersection = bitwise and, union = bitwise or, etc

• "Only" a constant factor speedup
 ■ But very useful in practice
Basic Blocks

• A basic block is a sequence of statements s.t.
 ▪ No statement except the last in a branch
 ▪ There are no branches to any statement in the block except the first

• In practical data flow implementations,
 ▪ Compute Gen/Kill for each basic block
 – Compose transfer functions
 ▪ Store only In/Out for each basic block
 ▪ Typical basic block ~5 statements
Order Matters

• Assume forward data flow problem
 ▪ Let $G = (V, E)$ be the CFG
 ▪ Let k be the height of the lattice

• If G acyclic, visit in topological order
 ▪ Visit head before tail of edge
 ▪ Can be computed using reverse postorder

• Running time $O(|E|)$
 ▪ No matter what size the lattice
Order Matters — Cycles

• If G has cycles, reverse postorder still OK

• Let $Q = \max \# \text{ back edges on cycle-free path}$
 ▪ Nesting depth
 ▪ Back edge is from node to ancestor on DFS tree

• Then if $\forall x. f(x) \leq x$ (sufficient, but not necessary)
 ▪ Running time is $O((Q + 1)|E|)$
 – Note direction of req’t depends on top vs. bottom
Flow-Sensitivity

• Data flow analysis is flow-sensitive
 ▪ The order of statements is taken into account
 ▪ I.e., we keep track of facts per program point

• Alternative: Flow-insensitive analysis
 ▪ Analysis the same regardless of statement order
 ▪ Standard example: types

    ```
    /* x : int */ x := ... /* x : int */
    ```
Terminology Review

• Must vs. May
 ▪ (Not always followed in literature)
• Forwards vs. Backwards
• Flow-sensitive vs. Flow-insensitive
• Distributive vs. Non-distributive
Data Flow Analysis and Functions

• What happens at a function call?
 ▪ Lots of solutions in data flow analysis literature

• In practice, only analyze one procedure at a time

• Consequences
 ▪ Call to function kills all data flow facts
 ▪ May be able to improve depending on language, e.g., function call may not affect locals
More Terminology

• An analysis that models only a single function at a time is *intraprocedural*

• An analysis that takes multiple functions into account is *interprocedural*

• An analysis that takes the whole program into account is...guess?

• Note: *global* analysis means “more than one basic block,” but still within a function
Data Flow Analysis and The Heap

- Data Flow is good at analyzing local variables
 - But what about values stored in the heap?
 - Not modeled in traditional data flow

- In practice: \(*x := e \)
 - Assume all data flow facts killed (!)
 - Or, assume write through \(x \) may affect any variable whose address has been taken

- In general, hard to analyze pointers
Data Flow Analysis and Optimization
Data Flow Analysis and Optimization

• Moore’s Law: Hardware advances double computing power every 18 months.
Data Flow Analysis and Optimization

• Moore’s Law: Hardware advances double computing power every 18 months.

• Proebsting’s Law: Compiler advances double computing power every 18 years.
Data Flow Analysis and Optimization

- Moore’s Law: Hardware advances double computing power every 18 months.

- Proebsting’s Law: Compiler advances double computing power every 18 years.
 - Not so much bang for the buck!
DF Analysis and Defect Detection

• LCLint - Evans et al. (UVa)
• METAL - Engler et al. (Stanford, now Coverity)
• ESP - Das et al. (MSR)
• FindBugs - Hovemeyer, Pugh (Maryland)
 ▪ For Java. The first three are for C.

• Many other one-shot projects
 ▪ Memory leak detection
 ▪ Security vulnerability checking (tainting, info. leaks)