CMSC 132: Object-Oriented Programming II

Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park
Algorithm Efficiency

- Efficiency
 - Amount of resources used by algorithm
 - Time, space
- Measuring efficiency
 - Benchmarking
 - Asymptotic analysis
Benchmarking

Approach
- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time & space needed

Industry benchmarks
- SPEC – CPU performance
- MySQL – Database applications
- WinStone – Windows PC applications
- MediaBench – Multimedia applications
- Linpack – Numerical scientific applications
Benchmarking

Advantages
- Precise information for given configuration
 - Implementation, hardware, inputs

Disadvantages
- Affected by configuration
 - Data sets (often too small)
 - a dataset that was the right size 3 years ago is likely too small now
- Hardware
- Software
 - Affected by special cases (biased inputs)
 - Does not measure intrinsic efficiency
Asymptotic Analysis

Approach

- Mathematically analyze efficiency
- Calculate time as function of input size n
 - $T \approx O(f(n))$
 - T is on the order of $f(n)$
 - “Big O” notation

Advantages

- Measures intrinsic efficiency
- Dominates efficiency for large input sizes
- Programming language, compiler, processor irrelevant
Search Example

Number guessing game

- Pick a number between 1…n
- Guess a number
- Answer “correct”, “too high”, “too low”
- Repeat guesses until correct number guessed
Linear Search Algorithm

Algorithm
- Guess number = 1
- If incorrect, increment guess by 1
- Repeat until correct

Example
- Given number between 1…100
- Pick 20
- Guess sequence = 1, 2, 3, 4 … 20
- Required 20 guesses
Linear Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = 1, requires 1 guess
- If number = n, requires n guesses
- On average, needs n/2 guesses
- Time = \(O(n) \) = Linear time
Binary Search Algorithm

Algorithm
- Set low and high to be lowest and highest possible value
- Guess middle = \((\text{low}+\text{high})/2\)
- If too large, set high = middle - 1
- If too small, set low = middle + 1
- Repeat until guess correct
Example

- Given number between 1…100
- secret number we are trying to find is 20

Guesses

- low = 1, high = 100, guess 50, Answer = too large
- low = 1, high = 49, guess 25, Answer = too large
- low = 1, high = 24, guess 12, Answer = too small
- low = 13, high = 24, guess 18, Answer = too small
- low = 19, high = 24, guess 21, Answer = too large
- low = 19, high = 20, guess 19, Answer = too small
- low = 20, high = 20, guess 20, Answer = correct

Required 7 guesses
Binary Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = n/2, requires 1 guess
- If number = 1, requires $\log_2(n)$ guesses
- If number = n, requires $\log_2(n)$ guesses
- On average, needs $\log_2(n)$ guesses
- Time = $O(\log_2(n)) = O(\log(n)) = \text{Log time}$
Search Comparison

For number between 1…100

- Simple algorithm = 50 steps
- Binary search algorithm = $\log_2(n) = 7$ steps

For number between 1…100,000

- Simple algorithm = 50,000 steps
- Binary search algorithm = $\log_2(n)$ (about 17 steps)

Binary search is much more efficient!
Asymptotic Complexity

Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/2</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

Comparing two functions
- \(\frac{n}{2} \) and \(4n+3 \) behave similarly
- Run time roughly doubles as input size doubles
- Run time increases linearly with input size

For large values of \(n \)
- \(\frac{\text{Time}(2n)}{\text{Time}(n)} \) approaches exactly 2

Both are \(O(n) \) programs
Asymptotic Complexity

Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log$_2$(n)</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - $\log_2(n)$ and $5 \times \log_2(n) + 3$ behave similarly
 - Run time roughly increases by constant as input size doubles
 - Run time increases logarithmically with input size
- For large values of n
 - $\text{Time}(2n) - \text{Time}(n)$ approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor
 \[\log_a N = \frac{\log_b N}{\log_b a} \]
 - Both are $O(\log(n))$ programs
Asymptotic Complexity

Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>n^2</th>
<th>$2n^2 + 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>132</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
<td>520</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

Comparing two functions

- \(n^2 \) and \(2n^2 + 8 \) behave similarly
- Run time roughly increases by 4 as input size doubles
- Run time increases quadratically with input size

For large values of \(n \)

- \(\text{Time}(2n) / \text{Time}(n) \) approaches 4

Both are \(O(n^2) \) programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs

\[f(n) \leq O(\ldots) \]

steps

input size
Formal Definition of Big-O

Function $f(n)$ is $O(g(n))$ if

- For some positive constants M, N_0
- $M \times g(n) \geq f(n)$, for all $n \geq N_0$

Intuitively

- For some coefficient M & all data sizes $\geq N_0$
 - $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

5n + 1000 ⇒ O(n)

- Select M = 6, N₀ = 1000
- For n ≥ 1000
 - 6n ≥ 5n + 1000 is always true
- Example ⇒ for n = 1000
 - 6000 ≥ 5000 + 1000
Big-O Examples

- $2n^2 + 10n + 1000 \Rightarrow O(n^2)$
 - Select $M = 4$, $N_0 = 100$
 - For $n \geq 100$
 - $4n^2 \geq 2n^2 + 10n + 1000$ is always true
 - Example \Rightarrow for $n = 100$
 - $40000 \geq 20000 + 1000 + 1000$
Observations

- For large values of n
 - Any $O(\log(n))$ algorithm is faster than $O(n)$
 - Any $O(n)$ algorithm is faster than $O(n^2)$

- Asymptotic complexity is fundamental measure of efficiency
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>$O(\log(n))$</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>$O(n \log(n))$</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>$O(n^k)$</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>$O(k^n)$</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
<tr>
<td>$O(n!)$</td>
<td>Factorial</td>
<td>Brute-force search TSP</td>
</tr>
<tr>
<td>$O(n^n)$</td>
<td>N to the N</td>
<td></td>
</tr>
</tbody>
</table>

From smallest to largest

For size n, constant $k > 1$
Comparison of Complexity

A Comparison of Orders

\[f(x) = \begin{cases}
 n & \text{linear} \\
 \frac{1}{2}n^2 & \text{quadratic} \\
 n^3 & \text{cubic}
\end{cases} \]
Complexity Category Example

<table>
<thead>
<tr>
<th>Problem Size</th>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2^n</td>
</tr>
<tr>
<td>3</td>
<td>n^2</td>
</tr>
<tr>
<td>4</td>
<td>$n \log(n)$</td>
</tr>
<tr>
<td>5</td>
<td>n</td>
</tr>
<tr>
<td>6</td>
<td>$\log(n)$</td>
</tr>
</tbody>
</table>

Legend:
- 2^n
- n^2
- $n \log(n)$
- n
- $\log(n)$
Complexity Category Example

Problem Size

<table>
<thead>
<tr>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^n</td>
</tr>
<tr>
<td>n^2</td>
</tr>
<tr>
<td>$n\log(n)$</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>$\log(n)$</td>
</tr>
</tbody>
</table>
Calculating Asymptotic Complexity

As \(n \) increases

- Highest complexity term dominates
- Can ignore lower complexity terms

Examples

- \(2n + 100 \) \(\Rightarrow \) \(O(n) \)
- \(n \log(n) + 10n \) \(\Rightarrow \) \(O(n \log(n)) \)
- \(\frac{1}{2} n^2 + 100n \) \(\Rightarrow \) \(O(n^2) \)
- \(n^3 + 100n^2 \) \(\Rightarrow \) \(O(n^3) \)
- \(\frac{1}{100} 2^n + 100n^4 \) \(\Rightarrow \) \(O(2^n) \)
Complexity Examples

2n + 100 ⇒ O(n)
Complexity Examples

\(\frac{1}{2} n \log(n) + 10 n \Rightarrow O(n \log(n)) \)
Complexity Examples

$\frac{1}{2} n^2 + 100 n \Rightarrow O(n^2)$
Complexity Examples

1/100 $2^n + 100 n^4 \Rightarrow O(2^n)$
Types of Case Analysis

Can analyze different types (cases) of algorithm behavior

Types of analysis

- Best case
- Worst case
- Average case
- Amortized
Types of Case Analysis

Best case

- Smallest number of steps required
- Not very useful
- Example \Rightarrow Find item in first place checked
Types of Case Analysis

- **Worst case**
 - Largest number of steps required
 - Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
 - Example ⇒ Find item in last place checked
Quicksort Example

Quicksort

- One of the fastest comparison sorts
- Frequently used in practice

Quicksort algorithm

- Pick pivot value from list
- Partition list into values smaller & bigger than pivot
- Recursively sort both lists
Quicksort Example

Quicksort properties

- Average case = $O(n \log(n))$
- Worst case = $O(n^2)$
 - Pivot \approx smallest / largest value in list
 - Picking from front of nearly sorted list

Can avoid worst-case behavior

- Select random pivot value
Types of Case Analysis

Average case

- Number of steps required for “typical” case
- Most useful metric in practice
- Different approaches
 - Average case
 - Expected case
Approaches to Average Case

Average case
- Average over all possible inputs
 - Assumes all inputs have the same probability
- Example
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

Expected case
- Weighted average over all possible inputs
 - Based on probability of each input
- Example
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Average Case Example

Example problem

- **Average # of comparisons needed to find a number in the (sorted) array** $A[] = \{1, 4, 8, 12, 15\}$ using

 - **Linear search**
 - Start from beginning, compare elements one at a time

 - **Binary search**
 - Start from middle of array at index k, compare element
 - If not element, repeat for top or bottom half of remaining array depending on whether element is smaller or greater than $A[k]$
Average Case : Linear Search

Algorithm

- Find # of comparisons needed for each case
 - 1 → 1 comparison (1)
 - 4 → 2 comparisons (1, 4)
 - 8 → 3 comparisons (1, 4, 8)
 - 12 → 4 comparisons (1, 4, 8, 12)
 - 15 → 5 comparisons (1, 4, 8, 12, 15)

- Calc average = total # of comparisons / # cases
 - Total # comparisons = 1 + 2 + 3 + 4 + 5 = 15
 - # cases = 5
 - Average = 3 comparisons / number
Average Case : Binary Search

Algorithm

Find # of comparisons needed for each case

1 → 3 comparisons (8, 4, 1)
4 → 2 comparisons (8, 4)
8 → 1 comparisons (8)
12 → 2 comparisons (8, 12)
15 → 3 comparisons (8, 12, 15)

Calc average = total # of comparisons / # cases

Total # comparisons = 3 + 2 + 1 + 2 + 3 = 11
cases = 5
Average = 2.2 comparisons / number
Example problem 2

Average # of comparisons needed to find a number in a sorted array A[n] of size n using

- Linear search
- Binary search

For simplicity, we assume elements are stored in A[1] ... A[n]
Average Case: Linear Search

Algorithm

- **Find # of comparisons needed for each case**
 - ...

- **Calc average = total # of comparisons / # cases**
 - Total # comparisons = 1 + 2 + ... + n = \(\frac{1}{2} n^2 + 1 \)
 - # cases = n
 - Average ≈ \(\frac{1}{2} n \) comparisons / number
Algorithm

- Find # of comparisons needed for each case
 - A[n/2] → 1 comp (A[n/2])
 - ...

- Calc average = total # of comparisons / # cases
 - Total # comparisons = n/2 * log2(n) + n/4 * log2(n)−1 + ... + 1 = n log2(n)
 - # cases = n
 - Average ≈ log2(n) comparisons / number
Sample problem

Given an array a of integers

- **find the subrange that has the maximum sum**
 - e.g., find low, high that maximizes $a[\text{low}] + a[\text{low}+1] + \ldots + a[\text{high}]$
 - only non empty ranges ($\text{low} \leq \text{high}$)
 - If a contained only nonnegative integers, would be $\text{low} = 0$, $\text{high} = a\.\text{length} - 1$
 - but a can contain negative numbers
 - Can assume that arithmetic overflow isn't an issue
One solution

```java
public static int findBestRange(int[] a) {
    int bestSum = a[0];
    for (int low = 0; low < a.length; low++)
        for (int high = low; high < a.length; high++) {
            int sum = 0;
            for (int i = low; i <= high; i++) sum += a[i];
            if (bestSum < sum)
                bestSum = sum;
        }
    return bestSum;
}
```

// What is the complexity of the algorithm used here?
Can you find a better algorithm?