CMSC 132: Object-Oriented Programming II

Minimal Spanning Tree Algorithms

Department of Computer Science
University of Maryland, College Park
Overview

- Spanning trees
- Minimum spanning tree (MST)
 - Prim’s algorithm
 - Kruskal’s algorithm
- Graph implementation
 - Adjacency list / matrix / set
Spanning Tree

- Set of edges connecting all nodes in graph
 - need $N-1$ edges for N nodes
 - no cycles, can be thought of as a tree
- Can build tree during traversal

(a) Graph G
(b) Spanning tree T of graph G
Spanning Tree Construction

Recursive algorithm

Known = { start }
explore (start);

void explore (Node X) {
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Known
 explore(Y)
}

Spanning Tree Construction

Iterative algorithm

Known = { start }
Discovered = { start }
while (Discovered \neq \emptyset) {
 take node X out of Discovered
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Discovered
 Add Y to Known
}
Breadth & Depth First Spanning Trees

Breadth-first

Depth-first
Depth-First Spanning Tree Example
Breadth-First Spanning Tree Example
Spanning Tree Construction

Many spanning trees possible

- Different breadth-first traversals
 - Nodes same distance visited in different order
- Different depth-first traversals
 - Neighbors of node visited in different order
- Different traversals yield different spanning trees
Minimum Spanning Tree (MST)

Spanning tree with minimum total edge weight

(a) Graph G
(b) A spanning tree of cost C = 43
(c) A minimum spanning tree of cost C = 28
Minimum Spanning Tree (MST)

Possible to have multiple MSTs
- Different spanning trees with same weight

Example applications
- Minimize length of telephone lines for neighborhood
- Minimize distance of airplane routes serving cities
Algorithms for Finding MST

Three well known algorithms

1. **Borůvka’s algorithm** [1926]
 - For constructing efficient electricity network
 - Rediscovered by Sollin in 1960s

2. **Prim’s algorithm** [1957]
 - First discovered by Vojtěch Jarník in 1930
 - Similar to Djikstra’s algorithm

3. **Kruskal’s algorithm** [1956]
 - By Prof. Clyde Kruskal’s uncle
Algorithms for Finding MST

1. Borůvka’s algorithm
 - Add vertices to MST in parallel

2. Prim’s algorithm
 - Add vertices to MST
 - One at a time
 - Closest vertex first

3. Kruskal’s algorithm
 - Add edges to MST
 - One at a time
 - Lightest edge first
Shortest Path – Dijkstra’s Algorithm

\[S = \emptyset \]

\[P[] = \text{none for all nodes} \]

\[C[\text{start}] = 0, \quad C[] = \infty \text{ for all other nodes} \]

while (not all nodes in S)

 find node K not in S with smallest \(C[K] \)

 add K to S

 for each node J not in S adjacent to K

 if (\(C[K] + \text{cost of (K,J)} < C[J] \))

 \[C[J] = C[K] + \text{cost of (K,J)} \]

 \[P[J] = K \]

Optimal solution computed with greedy algorithm
MST – Prim’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes

while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (/* C[K] + */ cost of (K,J) < C[J])
 C[J] = /* C[K] + */ cost of (K,J)
 P[J] = K

Keeps track of vertex w/ minimal distance to current tree
Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm

sort edges by weight (from least to most)

tree = Ø

for each edge (X,Y) in order

 if it does not create a cycle

 add (X,Y) to tree

 stop when tree has N–1 edges

Keeps track of

- lightest edge remaining
- whether adding edge to MST creates cycle

Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm Example
MST – Kruskal’s Algorithm

When does adding (X,Y) to tree create cycle?

Two approaches to finding cycles

1. Traversal
2. Connected subgraph
MST – Kruskal’s Algorithm

Traversal approach
- Traverse tree starting at X
- If we can reach Y, adding (X,Y) would create cycle

Example
- Question
 - Add (X,Y) to MST?
- Answer
 - No, since can already reach Y from X by traversing MST
MST – Kruskal’s Algorithm

Connected subgraph approach
- Maintain set of nodes for each connected subgraph
- Initialize one connected subgraph for each node
- If X, Y in same set, adding (X,Y) would create cycle
- Otherwise
 1. Add edge (X,Y) to spanning tree
 2. Merge sets containing X, Y

To test set membership
- Use Union-Find algorithm
MST – Connected Subgraph Example

Original graph

<table>
<thead>
<tr>
<th>MST</th>
<th>Sets</th>
<th>Edge being considered for addition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A</td>
<td>{A} {B} {C} {D}</td>
<td><A, B> Include, since it connects two nodes in distinct sets</td>
</tr>
<tr>
<td>2. A</td>
<td>{A, B} {C} {D}</td>
<td><A, C> Include, since it connects two nodes in distinct sets</td>
</tr>
</tbody>
</table>

Ordered set of edges

- <A, B> 5
- <A, C> 9
- <B, C> 13
- <C, D> 15
- <B, D> 17
MST – Connected Subgraph Example

Original graph

 Ordered set of edges
 <A, B> 5
 <A, C> 9
 <B, C> 13
 <C, D> 15
 <B, D> 17

edge being considered for addition
 <B, C> Reject, since it connects nodes in the same set and would create a cycle

Sets

 3.
 MST
 A
 5
 B
 9
 C
 D

 {A, B, C} {D}

 4.
 A
 5
 B
 9
 C
 D

 {A, B, C} {D}

 <C, D> Include, since it connects two nodes in distinct sets

Finished
Union-Find Algorithm

Union-Find

- Algorithm & data structure
- Very efficient for testing membership in disjoint sets

Problem description

- Start with n nodes, each in different subgraph
- Support two operations
 - Find – are nodes x & y in same subgraph?
 - Union – merge subgraphs containing x & y
Union-Find Algorithm

- **Basic approach**
 - Each node has a parent pointer
 - Find – follow parent pointer(s) to root of tree
 - Union – point root of 1st tree to root of 2nd tree

- **Example**
 - Union(a, b) ; union(c , d); union(b, d)
Union-Find Algorithm

- **Path compression**
 - **Speeds up future Find() operations**
 1. Follow parent pointer(s) to root of tree
 2. Update all nodes along path to point to root

- **Example**
 - **Find(d)**

So how fast is Union-Find?
Ackermann’s Function

Function

```c
int A(x,y) {
    if (x == 0)
        return y+1;
    if (y == 0)
        return A(x – 1, 1);
    return A(x – 1, A(x, y – 1));
}
```

A() grows fast

- A(2,2) = 7
- A(3,3) = 61
- A(4,2) = \(2^{65536} – 3\)
- A(4,3) = \(2^{2^{65536}} – 3\)
- A(4,4) = \(2^{2^{2^{65536}}} – 3\)
Inverse Ackermann’s Function

Definition

- $\alpha(n)$ is the inverse Ackermann’s function
- $\alpha(n) = \text{the smallest } k \text{ such that } A(k,k) \geq n$

Fun fact

- $\alpha(\text{number of atoms in universe}) = 4$

Union-find

- A sequence of n operations requires $O(n \alpha(n))$ time
- Practically speaking, indistinguishable from $O(n)$
Graph Summary

- Graph data structure
 - Very useful in practice
 - Different representations

- Many graph algorithms
 - Traversal
 - Shortest path
 - Minimum spanning tree