CMSC 132: Object-Oriented Programming II

Graphs & Graph Traversal

Department of Computer Science
University of Maryland, College Park
Graph Data Structures

Many-to-many relationship between elements
- Each element has multiple predecessors
- Each element has multiple successors
Graph Definitions

- **Node**
 - **Element of graph**
 - **State**
 - List of adjacent/neighbor/successor nodes

- **Edge**
 - **Connection between two nodes**
 - **State**
 - Endpoints of edge
Graph Definitions

- Directed graph
 - Directed edges
- Undirected graph
 - Undirected edges

(a) Directed graph

(b) Undirected graph
Graph Definitions

- Weighted graph
 - Weight (cost) associated with each edge

![Weighted Graph Example](image)
Graph Definitions

Path

- Sequence of nodes n_1, n_2, \ldots, n_k
- Edge exists between each pair of nodes n_i, n_{i+1}

Example

- A, B, C is a path
- A, E, D is not a path
Graph Definitions

- **Cycle**
 - Path that ends back at starting node
 - Example
 - A, E, A
 - A, B, C, D, E, A

- **Simple path**
 - No cycles in path

- **Acyclic graph**
 - No cycles in graph
Graph Definitions

- **Reachable**
 - Path exists between nodes

- **Connected graph**
 - Every node is reachable from some node in graph

Unconnected graphs
Graph Operations

Traversal (search)

- Visit each node in graph exactly once
- Usually perform computation at each node

Two approaches

- Breadth first search (BFS)
- Depth first search (DFS)
Breadth-first Search (BFS)

Approach
- Visit all neighbors of node first
- View as series of expanding circles
- Keep list of nodes to visit in queue

Example traversal
1. n
2. a, c, b
3. e, g, h, i, j
4. d, f
Breadth-first Tree Traversal

Example traversals starting from 1

1. Left to right:
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7

2. Right to left:
 - 1
 - 3
 - 2
 - 6
 - 5
 - 4
 - 7

3. Random:
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
Traversals Orders

Order of successors

- For tree
 - Can order children nodes from left to right
- For graph
 - Left to right doesn’t make much sense
 - Each node just has a set of successors and predecessors; there is no order among edges

For breadth first search

- Visit all nodes at distance k from starting point
- Before visiting any nodes at (minimum) distance k+1 from starting point
Depth-first Search (DFS)

Approach
- Visit all nodes on path first
- **Backtrack** when path ends
- Keep list of nodes to visit in a stack

Example traversal
1. N
2. A
3. B, C, D, ...
4. F...
Depth-first Tree Traversal

Example traversals from 1 (preorder)

Left to right:
- 1
- 2
- 6
- 3
- 5
- 7
- 4

Right to left:
- 1
- 4
- 2
- 6
- 5
- 3
- 7

Random:
- 1
- 2
- 6
- 4
- 3
- 7
- 5
Traversal Algorithms

Issue
- How to avoid revisiting nodes
- Infinite loop if cycles present

Approaches
- Record set of visited nodes
- Mark nodes as visited
Traversing a graph can involve a set of visited nodes to avoid revisiting nodes. The process involves:

1. Initialize the set of visited nodes, `Visited`, to the empty set.
2. Add nodes to `Visited` as they are visited.
3. Skip nodes that are already in `Visited`.

The diagrams illustrate this process with a graph:

- Initially, `V = \emptyset`.
- After visiting nodes 1 and 2, `V = \{ 1 \}`.
- After visiting nodes 1, 2, and 4, `V = \{ 1, 2 \}`.

The sequence of visited nodes is shown step by step through the graph.
Traversals – Avoid Revisiting Nodes

- Mark nodes as visited
 - Initialize tag on all nodes (to False)
 - Set tag (to True) as node is visited
 - Skip nodes with tag = True
Traversing Algorithm Using Sets

\begin{align*}
\{ \text{Visited} \} &= \emptyset \\
\{ \text{Discovered} \} &= \{ \text{1st node} \} \\
\text{while } (\{ \text{Discovered} \} \neq \emptyset) & \\
\quad \text{take node } X \text{ out of } \{ \text{Discovered} \} \\
\quad \text{if } X \text{ not in } \{ \text{Visited} \} & \\
\quad \quad \text{add } X \text{ to } \{ \text{Visited} \} \\
\quad \text{for each successor } Y \text{ of } X & \\
\quad \quad \text{if (} Y \text{ is not in } \{ \text{Visited} \} \text{)} & \\
\quad \quad \quad \text{add } Y \text{ to } \{ \text{Discovered} \} \\
\end{align*}
Traversing Algorithm Using Tags

for all nodes X

set \(X.\text{tag} = \text{False} \)

\{ \text{Discovered} \} = \{ \text{1st node} \}

while (\{ \text{Discovered} \} \neq \emptyset)

\begin{align*}
&\text{take node } X \text{ out of } \{ \text{Discovered} \} \\
&\text{if } (X.\text{tag} = \text{False}) \\
&\quad \text{set } X.\text{tag} = \text{True} \\
&\quad \text{for each successor } Y \text{ of } X \\
&\quad \quad \text{if } (Y.\text{tag} = \text{False}) \\
&\quad \quad \quad \text{add } Y \text{ to } \{ \text{Discovered} \} \\
\end{align*}
BFS vs. DFS Traversal

- Order nodes taken out of `{ Discovered }` key
- Implement `{ Discovered }` as Queue
 - First in, first out
 - Traverse nodes breadth first
- Implement `{ Discovered }` as Stack
 - First in, last out
 - Traverse nodes depth first
BFS Traversal Algorithm

for all nodes X

$X\cdot \text{tag} = \text{False}$

put 1st node in Queue

while (Queue not empty)

take node X out of Queue

if ($X\cdot \text{tag} = \text{False}$)

set $X\cdot \text{tag} = \text{True}$

for each successor Y of X

if ($Y\cdot \text{tag} = \text{False}$)

put Y in Queue
DFS Traversal Algorithm

for all nodes X

\[X.tag = \text{False} \]

put 1st node in Stack

while (Stack not empty)

\[\text{pop X off Stack} \]

if (X.tag = False)

\[\text{set X.tag = True} \]

for each successor Y of X

if (Y.tag = False)

\[\text{push Y onto Stack} \]
Recursive Graph Traversal

Can traverse graph using recursive algorithm
- Recursively visit successors

Approach
Visit (X)
for each successor Y of X
Visit (Y)

Implicit call stack & backtracking
- Results in depth-first traversal
Recursive DFS Algorithm

Traverse()

for all nodes X
 set X.tag = False
 Visit (1^{st} node)

Visit (X)

set X.tag = True
for each successor Y of X
 if (Y.tag = False)
 Visit (Y)