CMSC 132:
Object-Oriented Programming II

Graphs & Graph Traversal

Department of Computer Science
University of Maryland, College Park
Graph Data Structures

- Many-to-many relationship between elements
 - Each element has **multiple** predecessors
 - Each element has **multiple** successors
Graph Definitions

Node
- Element of graph
- State
 - List of adjacent/neighbor/successor nodes

Edge
- Connection between two nodes
- State
 - Endpoints of edge
Graph Definitions

- **Directed graph**
 - Directed edges

- **Undirected graph**
 - Undirected edges

(a) Directed graph

(b) Undirected graph
Graph Definitions

- Weighted graph
 - Weight (cost) associated with each edge
Graph Definitions

Path

- Sequence of nodes $n_1, n_2, \ldots n_k$
- Edge exists between each pair of nodes n_i, n_{i+1}

Example

- A, B, C is a path
- A, E, D is not a path
Graph Definitions

- **Cycle**
 - Path that ends back at starting node
 - Example
 - A, E, A
 - A, B, C, D, E, A

- **Simple path**
 - No cycles in path

- **Acyclic graph**
 - No cycles in graph
Graph Definitions

Connected Graph
- Every node in the graph is reachable from every other node in the graph

Unconnected graph
- Graph that has several disjoint components

![Unconnected graph diagram]

Unconnected graph
Graph Operations

Traversal (search)

- Visit each node in graph exactly once
- Usually perform computation at each node
- Two approaches
 - Breadth first search (BFS)
 - Depth first search (DFS)
Breadth-first Search (BFS)

Approach

- Visit all neighbors of node first
- View as series of expanding circles
- Keep list of nodes to visit in queue

Example traversal

1. n
2. a, c, b
3. e, g, h, i, j
4. d, f
Breadth-first Tree Traversal

Example traversals starting from 1

- Left to right:
 1 → 2 → 3 → 4 → 5 → 6 → 7

- Right to left:
 1 → 3 → 2 → 6 → 5 → 4 → 7

- Random:
 1 → 3 → 2 → 6 → 5 → 4 → 7

Left to right | Right to left | Random
Traversals Orders

Order of successors

- For tree
 - Can order children nodes from left to right
- For graph
 - Left to right doesn’t make much sense
 - Each node just has a set of successors and predecessors; there is no order among edges

For breadth first search

- Visit all nodes at distance k from starting point
- Before visiting any nodes at (minimum) distance k+1 from starting point
Depth-first Search (DFS)

Approach
- Visit all nodes on path first
- Backtrack when path ends
- Keep list of nodes to visit in a stack

Example traversal
1. N
2. A
3. B, C, D, ...
4. F...
Depth-first Tree Traversal

Example traversals from 1 (preorder)

Left to right

Right to left

Random
Traversals Algorithms

Issue
- How to avoid revisiting nodes
- Infinite loop if cycles present

Approaches
- Record set of visited nodes
- Mark nodes as visited
Traversing – Avoid Revisiting Nodes

- Record set of visited nodes
 - Initialize \(\{ \text{Visited} \} \) to empty set
 - Add to \(\{ \text{Visited} \} \) as nodes is visited
 - Skip nodes already in \(\{ \text{Visited} \} \)

\[
V = \emptyset
\]

\[
V = \{ 1 \}
\]

\[
V = \{ 1, 2 \}
\]
Traversals – Avoid Revisiting Nodes

Mark nodes as visited

- Initialize tag on all nodes (to False)
- Set tag (to True) as node is visited
- Skip nodes with tag = True
Traversal Algorithm Using Sets

\{ \text{Visited} \} = \emptyset

\{ \text{Discovered} \} = \{ 1\text{st node} \}

\textbf{while} (\{ \text{Discovered} \} \neq \emptyset)

\hspace{1em} \text{take node } X \text{ out of } \{ \text{Discovered} \}

\hspace{1em} \text{if } X \text{ not in } \{ \text{Visited} \}

\hspace{2em} \text{add } X \text{ to } \{ \text{Visited} \}

\hspace{1em} \text{for each successor } Y \text{ of } X

\hspace{2em} \text{if } (Y \text{ is not in } \{ \text{Visited} \})

\hspace{3em} \text{add } Y \text{ to } \{ \text{Discovered} \}
Traversing Algorithm Using Tags

for all nodes X

set X.tag = False

{ Discovered } = { 1st node }

while ({ Discovered } ≠ ∅)

 take node X out of { Discovered }

 if (X.tag = False)

 set X.tag = True

 for each successor Y of X

 if (Y.tag = False)

 add Y to { Discovered }
BFS vs. DFS Traversal

- Order nodes taken out of \{ \text{Discovered} \} key
- Implement \{ \text{Discovered} \} as Queue
 - First in, first out
 - Traverse nodes breadth first
- Implement \{ \text{Discovered} \} as Stack
 - First in, last out
 - Traverse nodes depth first
BFS Traversal Algorithm

for all nodes X

X.tag = False

put 1st node in Queue

while (Queue not empty)

take node X out of Queue

if (X.tag = False)

set X.tag = True

for each successor Y of X

if (Y.tag = False)

put Y in Queue
DFS Traversal Algorithm

for all nodes X
 X.tag = False
put 1st node in Stack
while (Stack not empty)
 pop X off Stack
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 push Y onto Stack
Example

Let’s do a BFS/DFS using the following graph (start vertex A)
Recursive Graph Traversal

- Can traverse graph using recursive algorithm
 - Recursively visit successors

- Approach
 - Visit (X)
 - for each successor Y of X
 - Visit (Y)

- Implicit call stack & backtracking
 - Results in depth-first traversal
Recursive DFS Algorithm

Traverse()
 for all nodes X
 set X.tag = False
 Visit (1st node)

Visit (X)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 Visit (Y)