CMSC 132: Object-Oriented Programming II

Advanced Tree Structures

Department of Computer Science
University of Maryland, College Park
Overview

- Binary trees
 - Balance
 - Rotation
- Multi-way trees
 - Search
 - Insert
- Indexed tries
Tree Balance

- **Degenerate**
 - Worst case
 - Search in $O(n)$ time

- **Balanced**
 - Average case
 - Search in $O(\log(n))$ time

Degenerate binary tree

Balanced binary tree
Tree Balance

Question

- Can we keep tree (mostly) balanced?

Self-balancing binary search trees

- AVL trees
- Red-black trees

Approach

- Select invariant (that keeps tree balanced)
- Fix tree after each insertion / deletion
 - Maintain invariant using rotations
- Provides operations with $O(\log(n))$ worst case
AVL Trees

Properties
- Binary search tree
- Heights of children for node differ by at most 1

Example

Heights of children shown in red
AVL Trees

History

Discovered in 1962 by two Russian mathematicians, Adelson-Velskii & Landis

Algorithm

1. Find / insert / delete as a binary search tree
2. After each insertion / deletion
 a) If height of children differ by more than 1
 b) Rotate children until subtrees are balanced
 c) Repeat check for parent (until root reached)
Tree Rotations

- Changes shape of tree
 - Rotation moves one node up in the tree and one node down
 - Height is decreased by moving larger subtrees up and smaller subtrees down

Types

- Single rotation
 - Left
 - Right

- Double rotation
 - Left-right
 - Right-left
Tree Rotation Example

Single right rotation

Diagram showing a single right rotation.
Tree Rotation Example

Single right rotation

Node 4 attached to new parent
Example – Single Rotations

1. **Single Left Rotation**

 - Original tree:
 - T_0 (root)
 - T_1
 - T_3
 - T_2

 - After rotation:
 - T_0 (root)
 - T_1
 - T_2
 - T_3

2. **Single Right Rotation**

 - Original tree:
 - T_0 (root)
 - T_1
 - T_3
 - T_2

 - After rotation:
 - T_0 (root)
 - T_1
 - T_2
 - T_3
Example – Double Rotations

Right-left double rotation

Left-right double rotation
Red-black Trees

Properties
- Binary search tree
- Every node is red or black
- The root is black
- Every leaf is black
- All children of red nodes are black
- For each leaf, same # of black nodes on path to root

Characteristics
- Properties ensures no leaf is twice as far from root as another leaf
Red-black Trees

Example
Red-black Trees

History
- Discovered in 1972 by Rudolf Bayer

Algorithm
- Insert / delete may require complicated bookkeeping & rotations

Java collections
- TreeMap, TreeSet use red-black trees
Multi-way Search Trees

Properties

- Generalization of binary search tree
- Node contains 1…k keys (in sorted order)
- Node contains 2…k+1 children
- Keys in j^{th} child $<$ j^{th} key $<$ keys in $(j+1)^{th}$ child

Examples
Types of Multi-way Search Trees

- **2-3 tree**
 - Internal nodes have 2 or 3 children

- **Index search trie**
 - Internal nodes have up to 26 children (for strings)

- **B-tree**
 - $T = \text{minimum degree}$
 - Non-root internal nodes have $T-1$ to $2T-1$ children
 - All leaves have same depth
Multi-way Search Trees

Search algorithm

1. Compare key x to 1…k keys in node
2. If $x = \text{some key}$ then return node
3. Else if ($x < \text{key } j$) search child j
4. Else if ($x > \text{all keys}$) search child $k+1$

Example

Search(17)
Multi-way Search Trees

Insert algorithm

1. Search key x to find node n
2. If (n not full) insert x in n
3. Else if (n is full)
 a) Split n into two nodes
 b) Move middle key from n to n’s parent
 c) Insert x in n
 d) Recursively split n’s parent(s) if necessary
Multi-way Search Trees

Insert Example (for 2-3 tree)

Insert(4)
Multi-way Search Trees

- Insert Example (for 2-3 tree)
 - Insert(1)

```
5   12
124 8 17
```

```
5
2 12
1 4 8 17
```

Split node

Split parent
B-Trees

Characteristics

- Height of tree is $O(\log_T(n))$
- Reduces number of nodes accessed
- Wasted space for non-full nodes

Popular for large databases

- 1 node = 1 disk block
- Reduces number of disk blocks read
Indexed Search Tree (Trie)

- Special case of tree
- Applicable when
 - Key C can be decomposed into a sequence of subkeys $C_1, C_2, \ldots C_n$
 - Redundancy exists between subkeys
- Approach
 - Store subkey at each node
 - Path through trie yields full key
Standard Trie Example

For strings

\{ bear, bell, bid, bull, buy, sell, stock, stop \}
Word Matching Trie

- Insert words into trie
- Each leaf stores occurrences of word in the text

```
s e e | a | b e a r ? | s e l l | s t o c k!
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
s e e | a | b u l l ? | b u y | s t o c k!
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
b i d | s t o c k! | b i d | s t o c k!
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
h e a r | t h e | b e l l ? | s t o p!
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
```
Compressed Trie

Observation

Internal node \(v \) of \(T \) is redundant if \(v \) has one child and is not the root

Approach

A chain of redundant nodes can be compressed
- Replace chain with single node
- Include concatenation of labels from chain

Result

Internal nodes have at least 2 children
- Some nodes have multiple characters
Compressed Trie

Example
Tries and Web Search Engines

- Search engine index
 - Collection of all searchable words
 - Stored in compressed trie

- Each leaf of trie
 - Associated with a word
 - List of pages (URLs) containing that word
 - Called occurrence list

- Trie is kept in memory (fast)
- Occurrence lists kept in external memory
 - Ranked by relevance