CMSC 132: Object-Oriented Programming II

Minimal Spanning Tree Algorithms

Department of Computer Science
University of Maryland, College Park
Overview

- Spanning trees
- Minimum spanning tree (MST)
 - Prim’s algorithm
 - Kruskal’s algorithm
- Graph implementation
 - Adjacency list / matrix / set
Spanning Tree

Set of edges connecting all nodes in graph
- need N-1 edges for N nodes
- no cycles, can be thought of as a tree

Can build tree during traversal

(a) Graph G
(b) Spanning tree T of graph G
Spanning Tree Construction

Recursive algorithm

Known = { start }
explore (start);

void explore (Node X) {
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X
 Add Y to Known
 explore(Y)
}

Spanning Tree Construction

Iterative algorithm

\[
\begin{align*}
\text{Known} & = \{ \text{start} \} \\
\text{Discovered} & = \{ \text{start} \} \\
\text{while} \ (\ \text{Discovered} \neq \emptyset) \ {\{} \\
& \quad \text{take node } X \text{ out of Discovered} \\
& \quad \text{for each successor } Y \text{ of } X \\
& \quad \quad \text{if } (Y \text{ is not in Known}) \\
& \quad \quad \quad \text{Parent}[Y] = X \\
& \quad \quad \quad \text{Add } Y \text{ to Discovered} \\
& \quad \quad \quad \text{Add } Y \text{ to Known} \\
\{ &
\end{align*}
\]
Breadth & Depth First Spanning Trees

Breadth-first

Depth-first
Depth-First Spanning Tree Example
Breadth-First Spanning Tree Example
Spanning Tree Construction

Many spanning trees possible

- Different breadth-first traversals
 - Nodes same distance visited in different order
- Different depth-first traversals
 - Neighbors of node visited in different order
- Different traversals yield different spanning trees
Minimum Spanning Tree (MST)

Spanning tree with minimum total edge weight

(a) Graph G
(b) A spanning tree of cost $C = 43$
(c) A minimum spanning tree of cost $C = 28$
Minimum Spanning Tree (MST)

Possible to have multiple MSTs
- Different spanning trees with same weight

Example applications
- Minimize length of telephone lines for neighborhood
- Minimize distance of airplane routes serving cities
Algorithms for Finding MST

Three well known algorithms

1. Borůvka’s algorithm [1926]
 - For constructing efficient electricity network
 - Rediscovered by Sollin in 1960s

2. Prim’s algorithm [1957]
 - First discovered by Vojtěch Jarník in 1930
 - Similar to Djikstra’s algorithm

3. Kruskal’s algorithm [1956]
 - By Prof. Clyde Kruskal’s uncle
Algorithms for Finding MST

1. Borůvka’s algorithm
 - Add vertices to MST in parallel

2. Prim’s algorithm
 - Add vertices to MST
 - One at a time
 - Closest vertex first

3. Kruskal’s algorithm
 - Add edges to MST
 - One at a time
 - Lightest edge first
Shortest Path – Dijkstra’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes

while (not all nodes in S)

find node K not in S with smallest C[K]
add K to S

for each node J not in S adjacent to K

if (C[K] + cost of (K,J) < C[J])

C[J] = C[K] + cost of (K,J)
P[J] = K

Optimal solution computed with greedy algorithm
MST – Prim’s Algorithm

\[S = \emptyset \]

\[P[\] = \text{none for all nodes} \]

\[C[\text{start}] = 0, \ C[] = \infty \text{ for all other nodes} \]

\[\text{while (not all nodes in } S \text{)} \]

\[\text{find node } K \text{ not in } S \text{ with smallest } C[K] \]

\[\text{add } K \text{ to } S \]

\[\text{for each node } J \text{ not in } S \text{ adjacent to } K \]

\[\text{if (/* } C[K] + */ \text{ cost of (} K,J) < C[J] \text{)} \]

\[C[J] = /* C[K] + */ \text{ cost of (} K,J) \]

\[P[J] = K \]

Keeps track of vertex w/ minimal distance to current tree

Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm

sort edges by weight (from least to most)

tree = ∅

for each edge (X, Y) in order

 if it does not create a cycle
 add (X, Y) to tree
 stop when tree has N–1 edges

Keeps track of

- lightest edge remaining
- whether adding edge to MST creates cycle

Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm Example
MST – Kruskal’s Algorithm

When does adding (X,Y) to tree create cycle?

Two approaches to finding cycles
1. Traversal
2. Connected subgraph
Traversing approach

- Traverse tree starting at X
- If we can reach Y, adding (X,Y) would create cycle

Example

- **Question**: Add (X,Y) to MST?
- **Answer**: No, since can already reach Y from X by traversing MST
MST – Kruskal’s Algorithm

- Connected subgraph approach
 - Maintain set of nodes for each connected subgraph
 - Initialize one connected subgraph for each node
 - If X, Y in same set, adding (X,Y) would create cycle
 - Otherwise
 1. Add edge (X,Y) to spanning tree
 2. Merge sets containing X, Y

To test set membership
- Use Union-Find algorithm
MST – Connected Subgraph Example

Original graph

Ordered set of edges

\(<A, B> \quad 5\\n< A, C> \quad 9\\n< B, C> \quad 13\\n< C, D> \quad 15\\n< B, D> \quad 17\\n
MST

Sets

Edge being considered for addition

1. \{A\} \{B\} \{C\} \{D\}

\(<A, B> \quad \text{Include, since it connects two nodes in distinct sets}\\n
2. \{A, B\} \{C\} \{D\}

\(<A, C> \quad \text{Include, since it connects two nodes in distinct sets}\\n
\text{(Diagram showing the graph and the sets)}
MST – Connected Subgraph Example

Original graph

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>5</td>
</tr>
<tr>
<td>A-C</td>
<td>9</td>
</tr>
<tr>
<td>B-C</td>
<td>13</td>
</tr>
<tr>
<td>C-D</td>
<td>15</td>
</tr>
<tr>
<td>B-D</td>
<td>17</td>
</tr>
</tbody>
</table>

Ordered set of edges

- <A, B> 5
- <A, C> 9
- <B, C> 13
- <C, D> 15
- <B, D> 17

MST

3. A-B 5
 A-C 9
 C-D

Sets

- {A, B, C} {D}

Edge being considered for addition

- <B, C> Reject, since it connects nodes in the same set and would create a cycle
- <C, D> Include, since it connects two nodes in distinct sets

4. A-B 5
 A-C 9
 C-D

Sets

- {A, B, C, D}

Finished
Union-Find Algorithm

Union-Find
- Algorithm & data structure
- Very efficient for testing membership in disjoint sets

Problem description
- Start with n nodes, each in different subgraph
- Support two operations
 - Find – are nodes x & y in same subgraph?
 - Union – merge subgraphs containing x & y
Union-Find Algorithm

Basic approach
- Each node has a parent pointer
- Find – follow parent pointer(s) to root of tree
- Union – point root of 1\(^{st}\) tree to root of 2\(^{nd}\) tree

Example
- Union(a, b) ; union(c, d); union(b, d)

![Diagram](attachment:image.png)
Union-Find Algorithm

Path compression

- Speeds up future Find() operations
 1. Follow parent pointer(s) to root of tree
 2. Update all nodes along path to point to root

Example

- Find(d)

So how fast is Union-Find?
Ackermann’s Function

Function

```c
int A(x, y) {
    if (x == 0)
        return y + 1;
    if (y == 0)
        return A(x - 1, 1);
    return A(x - 1, A(x, y - 1));
}
```

A() grows fast

- A(2,2) = 7
- A(3,3) = 61
- A(4,2) = $2^{65536} - 3$
- A(4,3) = $2^{2^{65536}} - 3$
- A(4,4) = $2^{2^{2^{65536}}} - 3$
Inverse Ackermann's Function

Definition
- \(\alpha(n) \) is the inverse Ackermann’s function
- \(\alpha(n) = \) the smallest \(k \) such that \(A(k,k) \geq n \)

Fun fact
- \(\alpha(\text{number of atoms in universe}) = 4 \)

Union-find
- A sequence of \(n \) operations requires \(O(n \alpha(n)) \) time
- Practically speaking, indistinguishable from \(O(n) \)
Graph Summary

Graph data structure
- Very useful in practice
- Different representations

Many graph algorithms
- Traversal
- Shortest path
- Minimum spanning tree