CMSC 132: Object-Oriented Programming II

Collection Abstractions & Java Collections

Department of Computer Science
University of Maryland, College Park
Collection

- Programs represent and manipulate abstractions (chunks of information)
 - Examples: roster of students, deck of cards, a Tetromino

- One of the most universal abstractions is a collection
 - Represents an aggregation of multiple objects
 - Plus, perhaps, a relation between elements
 - Examples: list, set, ordered set, map, array, tree
 - Supporting different operations
Data Structures

- **Data structure**
 - A way of representing & storing information

- **Choice of data structure affects**
 - Abstractions supported
 - Amount of storage required
 - Which operations can be efficiently performed

- Collections may be implemented using many different data structures
Graph Abstractions

- Many-to-many relationship between elements
 - Each element has **multiple** predecessors
 - Each element has **multiple** successors
Graph abstractions

- Undirected graph
 - Undirected edges
- Directed graph
 - Directed edges
- Directed acyclic graph (DAG)
 - Directed edges, no cycles
Tree abstractions

- One-to-many relationship between elements
 - Each element has unique predecessor
 - Each element has multiple successors
Tree Abstractions

- **Forest**
 - DAG, but each node has at most one edge to it (from a parent)

- **Tree**
 - Forest with only one node (the root) that doesn’t have a parent

- **Binary Tree**
 - A tree where each node has at most 2 children
Sequence Abstractions

- One-to-one relationship between elements
 - Each element has unique predecessor
 - Each element has unique successor

![Diagram showing sequence abstractions with arrows indicating one-to-one relationships and unique predecessors and successors.]
Sequences or Ordered Collections

- **List**
 - A sequence of elements
 - The user of this interface has precise control over where in the list each element is inserted.
 - The user can access elements by their integer index (position in the list), and search for elements in the list.
Limited Sequences

Queue
- Can add only at the tail
- Can only access or remove at the head
- First-in, First-out (FIFO)

Stack
- Can add only at the top
- Can only access or remove at the top
- Last-in, First-out (LIFO)

Deque: double ended queue
- Can add, access or remove at either end
Set Data Structures

- No relationship between elements
 - Elements have no predecessor / successor
 - Only one copy of element allowed in set

Diagram:
- Set A
- Set B
- Set C
Set Abstractions

Set
- E.g., \{Mitt, Mike, John, Ron\}

Map
- Like a set, but each element in the set is mapped to a value
- E.g., \{Mitt=280, Mike=243, John=843, Ron=14\}

SortedSet
- Elements must be comparable, or a comparator must be provided
- Elements can be accessed in order
Abstraction Taxonomy

Classification scheme for data structures
- Based on relationships between elements

<table>
<thead>
<tr>
<th>Category</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph</td>
<td>many ⇒ many</td>
</tr>
<tr>
<td>Hierarchical</td>
<td>one ⇒ many</td>
</tr>
<tr>
<td>Linear</td>
<td>one ⇒ one</td>
</tr>
<tr>
<td>Set</td>
<td>no explicit relationship</td>
</tr>
</tbody>
</table>
Desert Island Abstraction

If you could have only one abstraction with you on a desert island...

Graph is the most general
- Can represent any of the other abstractions
 - E.g., A set is a graph with no edges

But more specific abstractions have advantages
- Some things are unique and well defined (e.g., first element)
- Implementations for more specific abstractions can support more efficient operations
Java Collection Framework (JCF)

- Java provides several interfaces and classes for manipulating & organizing data
 - Example: List, Set, Map interfaces

Java Collection Framework consists of

- Interfaces
 - Abstract data types
- Implementations
 - Reusable data structures
- Algorithms
 - Reusable functionality
Collection Interface

Core operations
- Add element
- Remove element
- Determine size (# of elements)
- Iterate through all elements

Additional operations supported by some collections
- Find first element
- Find k^{th} element
- Find largest element
- Sort elements
Collection vs. Collections

Collection
- Interface
 - Root interface of collection hierarchy
 - Methods: add(), contains(), remove(), size()

Collections
- Class
 - Contains static methods that operate on collections
 - Methods: shuffle(), copy(), list()