CMSC 132: Object-Oriented Programming II

More graph algorithms

Department of Computer Science
University of Maryland, College Park
For algorithms on graphs, we typically don't measure performance in terms of N, the size of the input.

Rather, we measure in performance in terms of V (number of vertices) and E (number of edges).

E might be $O(V^2)$ for dense graphs,

but is often $O(V)$, indicating a sparse graph.
For Dijkstra's algorithm

- V steps (one for each vertex)

- In each step, need to find the next vertex to add
 - have to enumerate all vertices with known distances
 - might be small, but might be as high as $O(V)$
 - and also enumerate through all edges

- Total cost: $O(E + V^2)$
 - But we can be faster

- Use a heap to keep track of vertices that might be added to S

- When we find a new, shorter path to a vertex
 - may need to bubble entry in heap up
Dijkstra performance with heap

- Each bubble up step might cost $O(\log V)$
- total cost is $O(E + V \log V)$
 - For dense graphs, E is $O(V^2)$, not an improvement
 - But for sparse graphs, significantly better
CMSC 132:
Object-Oriented Programming II

Strongly connected components

Department of Computer Science
University of Maryland, College Park
Strongly connected components

- Decompose a directed graph into sets of vertices (aka components)
- From any vertex in a SCC, you can reach all the other vertices in that component
- In a graph with no cycles, each vertex is in its own SCC
SCC algorithm

- Perform a DFS of entire graph
 - if after starting from a node you don't cover the entire graph, start again from an arbitrary covered vertex

- Record the finish time for each vertex
 - keep track of when a vertex and all of its children have been visited

- More steps, but let's understand this part first
DFS example

- Each node records two times: when search starts, and when it finishes
- Search starts at c, reaches g, f, h and d
- Starts again at b, reaches e and f
Do DFS on reversed graph

- Reverse all edges
- Perform DFS, starting with vertex finished last
 - When one DFS completes, all nodes seen in that DFS are one component
 - Choose next unvisited vertex that was finished last in first pass
Running the algorithm
Result
CMSC 132: Object-Oriented Programming II

Minimal Spanning Tree Algorithms

Department of Computer Science
University of Maryland, College Park
Overview

- Spanning trees
- Minimum spanning tree (MST)
 - Prim’s algorithm
 - Kruskal’s algorithm
- Graph implementation
 - Adjacency list / matrix / set
Spanning Tree

- Set of edges connecting all nodes in graph
 - need N-1 edges for N nodes
 - no cycles, can be thought of as a tree

- Can build tree during traversal

(a) Graph G

(b) Spanning tree T of graph G
Spanning Tree Construction

- Recursive algorithm

```
Known = { start }
explore ( start );

void explore (Node X) {
    for each successor Y of X
        if (Y is not in Known)
            Parent[Y] = X  // add X → Y edge
            Add Y to Known
            explore(Y)
}
```
Spanning Tree Construction

Iterative algorithm

Known = \{ start \}
Discovered = \{ start \}
while (Discovered ≠ ∅) {
 take node X out of Discovered
 for each successor Y of X
 if (Y is not in Known)
 Parent[Y] = X // add X -> Y edge
 Add Y to Discovered
 Add Y to Known
}
Breadth & Depth First Spanning Trees

Breadth-first

Depth-first
Depth-First Spanning Tree Example
Breadth-First Spanning Tree Example
Spanning Tree Construction

- Many spanning trees possible
 - Different breadth-first traversals
 - Nodes same distance visited in different order
 - Different depth-first traversals
 - Neighbors of node visited in different order
 - Different traversals yield different spanning trees
Minimum Spanning Tree (MST)

Spanning tree with minimum total edge weight

(a) Graph G
(b) A spanning tree of cost $C = 43$
(c) A minimum spanning tree of cost $C = 28$
Minimum Spanning Tree (MST)

- Possible to have multiple MSTs
 - Different spanning trees with same weight

- Example applications
 - Minimize length of telephone lines for neighborhood
 - Minimize distance of airplane routes serving cities
Algorithms for Finding MST

Three well known algorithms

1. Borůvka’s algorithm [1926]
 - For constructing efficient electricity network
 - Rediscovered by Sollin in 1960s

2. Prim’s algorithm [1957]
 - First discovered by Vojtěch Jarník in 1930
 - Similar to Djikstra’s algorithm

3. Kruskal’s algorithm [1956]
 - By Prof. Clyde Kruskal’s uncle
Algorithms for Finding MST

1. Borůvka’s algorithm
 - Add vertices to MST in parallel

2. Prim’s algorithm
 - Add vertices to MST
 - One at a time
 - Closest vertex first

3. Kruskal’s algorithm
 - Add edges to MST
 - One at a time
 - Lightest edge first
Shortest Path – Dijkstra’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes

while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (C[K] + cost of (K,J) < C[J])
 C[J] = C[K] + cost of (K,J)
 P[J] = K

Optimal solution computed with greedy algorithm
MST – Prim’s Algorithm

S = ∅
P[] = none for all nodes
C[start] = 0, C[] = ∞ for all other nodes

while (not all nodes in S)
 find node K not in S with smallest C[K]
 add K to S
 for each node J not in S adjacent to K
 if (/* C[K] + */ cost of (K,J) < C[J])
 C[J] = /* C[K] + */ cost of (K,J)
P[J] = K

Keeps track of vertex w/ minimal distance to current tree
Optimal solution computed with greedy algorithm
MST – Kruskal’s Algorithm

sort edges by weight (from least to most)

\[\text{tree} = \emptyset \]

for each edge \((X, Y)\) in order

\[\text{if it does not create a cycle} \]

\[\text{add } (X, Y) \text{ to tree} \]

\[\text{stop when tree has } N-1 \text{ edges} \]

Keeps track of

- lightest edge remaining
- whether adding edge to MST creates cycle

Optimal solution computed with **greedy** algorithm
MST – Kruskal’s Algorithm Example
MST – Kruskal’s Algorithm

When does adding (X,Y) to tree create cycle?

Two approaches to finding cycles
1. Traversal
2. Connected subgraph
MST – Kruskal’s Algorithm

Traversal approach
- Traverse tree starting at X
- If we can reach Y, adding (X,Y) would create cycle

Example
- Question
 - Add (X,Y) to MST?
- Answer
 - No, since can already reach Y from X by traversing MST
MST – Kruskal’s Algorithm

Connected subgraph approach
- Maintain set of nodes for each connected subgraph
- Initialize one connected subgraph for each node
- If X, Y in same set, adding (X,Y) would create cycle
- Otherwise
 1. Add edge (X,Y) to spanning tree
 2. Merge sets containing X, Y

To test set membership
- Use Union-Find algorithm
MST – Connected Subgraph Example

Original graph

Ordered set of edges

\(<A, B> \ 5\)
\(<A, C> \ 9\)
\(<B, C> \ 13\)
\(<C, D> \ 15\)
\(<B, D> \ 17\)

MST

1. \(\{A\} \ {B}\) \(\{C\} \ {D}\)

Sets

\(<A, B>\) Include, since it connects two nodes in distinct sets

2. \(\{A, B\} \ {C}\) \(\{D\}\)

\(<A, C>\) Include, since it connects two nodes in distinct sets

Edge being considered for addition
MST – Connected Subgraph Example

Original graph

Ordered set of edges

- \(<A, B> 5\)
- \(<A, C> 9\)
- \(<B, C> 13\)
- \(<C, D> 15\)
- \(<B, D> 17\)

Sets

- \(\{A, B, C\} \{D\}\)

Edge being considered for addition

- \(<B, C>\) Reject, since it connects nodes in the same set and would create a cycle
- \(<C, D>\) Include, since it connects two nodes in distinct sets

Finished
Union-Find Algorithm

Union-Find

- Algorithm & data structure
- Very efficient for testing membership in disjoint sets

Problem description

- Start with n nodes, each in different subgraph
- Support two operations
 - Find – are nodes x & y in same subgraph?
 - Union – merge subgraphs containing x & y
Union-Find Algorithm

- **Basic approach**
 - Each node has a parent pointer
 - Find – follow parent pointer(s) to root of tree
 - Union – point root of 1^{st} tree to root of 2^{nd} tree

- **Example**
 - Union(a, b) ; union(c, d); union(b, d)
Union-Find Algorithm

Path compression

- Speeds up future Find() operations
 1. Follow parent pointer(s) to root of tree
 2. Update all nodes along path to point to root

Example

- Find(d)

So how fast is Union-Find?
Ackermann’s Function

Function

```
int A(x,y) {
    if (x == 0)
        return y+1;
    if (y == 0)
        return A(x – 1, 1);
    return A(x – 1, A(x, y – 1));
}
```

A() grows fast

- A(2,2) = 7
- A(3,3) = 61
- A(4,2) = $2^{65536} – 3$
- A(4,3) = $2^{2^{65536}} – 3$
- A(4,4) = $2^{2^{2^{65536}}} – 3$
Inverse Ackermann’s Function

Definition
- $\alpha(n)$ is the inverse Ackermann’s function
- $\alpha(n) = \text{the smallest } k \text{ such that } A(k,k) \geq n$

Fun fact
- $\alpha(\text{number of atoms in universe}) = 4$

Union-find
- A sequence of n operations requires $O(n \alpha(n))$ time
- Practically speaking, indistinguishable from $O(n)$
Graph Summary

- Graph data structure
 - Very useful in practice
 - Different representations

- Many graph algorithms
 - Traversal
 - Shortest path
 - Minimum spanning tree