Sorting Performance Project

- Due Monday, Nov 30th, 10am
- Implement several sorting algorithms
 - Bubble, exchange, insertion, call to build-in sort
 - any two of: merge sort, quick sort, heap sort
- Study their performance
 - understand how to benchmark Java code and algorithms
- What is their asymptotic performance?
- What are the constants?
- Do you see caching or other effects
Project deliverables

- Implementation of sorting algorithms
- Write up of your evaluation
 - expecting at least 3 pages, with graphs
- Data entry of the performance of your sort implementations
 - details coming
Prizes

- Non-grade prizes for fastest implementations of each sort
 - who can write the best bubble sort?
- Look at all implementations within 5% of performance of fastest implementation, winner is simplest and most elegant
 - don't over optimize
- Can also provide a multithreaded sort
 - will benchmark on both 2 core and 8 core systems
- Also a non-grade prize for best writeup
Overview

- **Comparison sort**
 - Bubble sort
 - Selection sort
 - Tree sort
 - Heap sort
 - Quick sort
 - Merge sort
 \[O(n^2) \]

- **Linear sort**
 - Counting sort
 - Bucket (bin) sort
 - Radix sort
 \[O(n) \]
Sorting

Goal
- Arrange elements in predetermined order
 - Based on key for each element
 - Derived from ability to compare two keys by size

Properties
- Stable ⇒ relative order of equal keys unchanged
 - Stable: \(3, 1, 4, 3, 3, 2 \rightarrow 1, 2, 3, 3, 3, 4 \)
 - Unstable: \(3, 1, 4, 3, 3, 2 \rightarrow 1, 2, 3, 3, 3, 4 \)
- In-place ⇒ uses only constant additional space
- External ⇒ can efficiently sort more data than can fit in memory
Sorting

Comparison sort
- Only uses pairwise key comparisons
- Proven lower bound of $O(n \log(n))$

Linear sort
- Uses additional properties of keys
- Only applicable in some situations
 - limited range of values
 - predictable or semi-uniform distribution
Bubble Sort

Approach
1. Iteratively sweep through shrinking portions of list
2. Swap element x with its right neighbor if x is larger

Performance
- $O(n^2)$ average / worst case
Bubble Sort Example

Sweep 1

Sweep 2

Sweep 3

Sweep 4

7 2 8 5 4
2 7 8 5 4
2 7 8 5 4
2 7 8 5 4
2 7 5 8 4
2 7 5 8 4
2 7 5 8 4
2 7 5 8 4
2 7 5 4 8
2 7 5 4 8
2 7 5 4 8
2 7 5 4 8
2 5 4 7 8
2 5 4 7 8
2 5 4 7 8
2 5 4 7 8
2 4 5 7 8
2 4 5 7 8
2 4 5 7 8
2 4 5 7 8
void bubbleSort(int[] a) {
 int outer, inner;
 for (outer = a.length - 1; outer > 0; outer--)
 for (inner = 0; inner < outer; inner++)
 if (a[inner] > a[inner + 1])
 swap(a, inner, inner + 1);
}

void swap(int a[], int x, int y) {
 int temp = a[x];
 a[x] = a[y];
 a[y] = temp;
}
Selection Sort

Approach
1. Iteratively sweep through shrinking portions of list
2. Select smallest element found in each sweep
3. Swap smallest element with front of current list

Performance
- $O(n^2)$ average / worst case

Example
void selectionSort(int[] a) {
 int outer, inner, min;
 for (outer = 0; outer < a.length - 1; outer++) {
 min = outer;
 for (inner = outer + 1; inner < a.length; inner++) {
 if (a[inner] < a[min]) {
 min = inner;
 }
 }
 swap(a, outer, min);
 }
}
Tree Sort

Approach
1. Insert elements in binary search tree
2. List elements using inorder traversal

Performance
- Binary search tree
 - \(O(n \log(n)) \) average case
 - \(O(n^2) \) worst case
- Balanced binary search tree
 - \(O(n \log(n)) \) average / worst case

Example
Binary search tree
\{ 7, 2, 8, 5, 4 \}
Heap Sort

Approach
1. Insert elements in heap
2. Remove largest element in heap, repeat
3. put each removed element in space no longer used

Performance
- $O(n \log(n))$ average / worst case

Example

Heap

```
8
/   \
7   2
/ \
4   5
```


Quick Sort

Approach
1. Select pivot value (near median of list)
2. Partition elements (into 2 lists) using pivot value
3. Recursively sort both resulting lists
4. Concatenate resulting lists
 - For efficiency pivot needs to partition list fairly evenly

Performance
- $O(n \log(n))$ average case
- $O(n^2)$ worst case
Quick Sort Algorithm

1. If list below size K
 - Sort w/ other algorithm

2. Else pick pivot x and partition S into
 - L elements $< x$
 - E elements $= x$
 - G elements $> x$

3. Quicksort L & G

4. Concatenate L, E & G
 - If not sorting in place
void quickSort(int[] a, int x, int y) {
 int pivotIndex;
 if ((y - x) > 0) {
 pivotIndex = partitionList(a, x, y);
 quickSort(a, x, pivotIndex - 1);
 quickSort(a, pivotIndex + 1, y);
 }
}

int partitionList(int[] a, int x, int y) {
 ... // partitions list and returns index of pivot
}
Quick Sort Example

Partition & Sort

Result
int partitionList(int[] a, int x, int y) {
 int pivot = a[x];
 int left = x;
 int right = y;
 while (left < right) {
 while ((a[left] < pivot) && (left < right))
 left++;
 while (a[right] > pivot)
 right--;
 if (left < right)
 swap(a, left, right);
 }
 swap(a, x, right);
 return right;
}
Merge Sort

Approach
1. Partition list of elements into 2 lists
2. Recursively sort both lists
3. Given 2 sorted lists, merge into 1 sorted list
 a) Examine head of both lists
 b) Move smaller to end of new list

Performance
- O(n log(n)) average / worst case
Merge Example
Merge Sort Example

Split

Merge

7 2 8 5 4

7 2
7 2
8 5 4
8 5 4
5 4
5 4

2 4 5 7 8

2 7
7 2
7 2
4 5 8
4 5 8
4 5
5 4
5 4
void mergeSort(int[] a, int x, int y) {
 int mid = (x + y) / 2;
 if (y == x) return;
 mergeSort(a, x, mid);
 mergeSort(a, mid+1, y);
 merge(a, x, y, mid);
}

void merge(int[] a, int x, int y, int mid) {
 ... // merges 2 adjacent sorted lists in array
}
Merge Sort Code

```c
void merge (int[] a, int x, int y, int mid) {
    int size = y - x;
    int left = x;
    int right = mid+1;
    int[] tmp; int j;
    for (j = 0; j < size; j++) {
        if (left > mid) tmp[j] = a[right++];
        else if (right > y) || (a[left] < a[right])
            tmp[j] = a[left++];
        else tmp[j] = a[right++];
    }
    for (j = 0; j < size; j++)
        a[x+j] = tmp[j];
}
```

- Copy merged array back
- Copy smaller of two elements at head of 2 array regions to tmp buffer, then move on
- Upper end of 1st array region
- Lower end of 1st array region
- Upper end of 2nd array region
Counting Sort

Approach
1. Sorts keys with values over range 0..k
2. Count number of occurrences of each key
3. Calculate # of keys ≤ each key
4. Place keys in sorted location using # keys counted
 - If there are x keys ≤ key y
 - Put y in x\(^{th}\) position
 - Decrement x in case more instances of key y

Properties
- O(n + k) average / worst case
Counting Sort Example

Original list

<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>8</th>
<th>5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Count

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Calculate # keys ≤ value

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Counting Sort Example

Assign locations

0 0 1 1 2 3 3 4 5
0 1 2 3 4 5 6 7 8

4-1 = 3
5-1 = 4
2-1 = 1
1-1 = 0
3-1 = 2
```c
void countSort(int[] a, int k) {
    // keys have value 0...k
    int[] b; int[] c; int i;
    for (i = 0; i ≤ k; i++) // initialize counts
        c[i] = 0;
    for (i = 0; i < a.size(); i++) // count # keys
        c[a[i]]++;
    for (i = 1; i ≤ k; i++) // calculate # keys ≤ value i
        c[i] = c[i] + c[i-1];
    for (i = a.size()-1; i > 0; i--) {
        b[c[a[i]]-1] = a[i]; // move key to location
        c[a[i]]--; // decrement # keys ≤ a[i]
    }
    for (i = 0; i < a.size(); i++) // copy sorted list back to a
        a[i] = b[i];
}
```
Bucket (Bin) Sort

Approach
1. Divide key interval into k equal-sized subintervals
2. Place elements from each subinterval into bucket
3. Sort buckets (using other sorting algorithm)
4. Concatenate buckets in order

Properties
- Pick large k so can sort n / k elements in $O(1)$ time
- $O(n)$ average case
- $O(n^2)$ worst case
- If most elements placed in same bucket and sorting buckets with $O(n^2)$ algorithm
Bucket Sort Example

1. Original list
 - 623, 192, 144, 253, 152, 752, 552, 231

2. Bucket based on 1st digit, then sort bucket
 - 192, 144, 152 \Rightarrow 144, 152, 192
 - 253, 231 \Rightarrow 231, 253
 - 552 \Rightarrow 552
 - 623 \Rightarrow 623
 - 752 \Rightarrow 752

3. Concatenate buckets
 - 144, 152, 192, 231, 253, 552, 623, 752
Radix Sort

Approach

1. Decompose key C into components C_1, C_2, \ldots, C_d
 - Component d is least significant
 - Each component has values over range $0..k$
2. For each key component $i = d$ down to 1
 - Apply linear sort based on component C_i
 (sort must be stable)

Example key components
- Letters (string), digits (number)

Properties
- $O(d \times (n+k)) \approx O(n)$ average / worst case
Radix Sort Example

1. Original list
 - 623, 192, 144, 253, 152, 752, 552, 231

2. Sort on 3\(^{rd}\) digit (counting sort from 0-9)
 - 231, 192, 152, 752, 552, 623, 253, 144

3. Sort on 2\(^{nd}\) digit (counting sort from 0-9)
 - 623, 231, 144, 152, 752, 552, 253, 192

4. Sort on 1\(^{st}\) digit (counting sort from 0-9)
 - 144, 152, 192, 231, 253, 552, 623, 752

Compare with: counting sort from 144-752
Sorting Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Comparison Sort</th>
<th>Avg Case Complexity</th>
<th>Worst Case Complexity</th>
<th>In Place</th>
<th>Can be Stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bubble</td>
<td>√</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Selection</td>
<td>√</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Tree</td>
<td>√</td>
<td>$O(n \log(n))$</td>
<td>$O(n^2)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heap</td>
<td>√</td>
<td>$O(n \log(n))$</td>
<td>$O(n \log(n))$</td>
<td>√?</td>
<td></td>
</tr>
<tr>
<td>Quick</td>
<td>√</td>
<td>$O(n \log(n))$</td>
<td>$O(n^2)$</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Merge</td>
<td>√</td>
<td>$O(n \log(n))$</td>
<td>$O(n \log(n))$</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Counting</td>
<td></td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Bucket</td>
<td></td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>Radix</td>
<td></td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
Sorting Summary

- Many different sorting algorithms
- Complexity and behavior varies
- Size and characteristics of data affect algorithm